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of these estimators to misspecification of the parametric model. Competing risk analyses
have been performed in the past and will continue to be performed in the future. This

study will provide the user of such techniques with an alternative to the usual approach

of assuming independent risks, an assumption which most of the methods currently in use

assume.
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A. TECHNICAL SECTION

3 1. Abstract

- ) The overall objective of this proposal is to develop improved

estimation techniques for use in reliability studies when there are

competing failure modes or competing causes of failure associated with a

single failure mode in data from series systems. Such improved

nonparametric estimators of the component failure distribution will be

accomplished by incorporating some dependence structure between the

potential component failure times. The first specific aim is to

investigate techniques which identify departures from independence, based

on data collected from series systems, by making some restrictive

assumption about the structure of the system, and obtain modified

nonparametric estimators which incorporate some restrictive assumptions

about the structure of the system. Thi second aim will be to develop

improved nonparametric estimators of component lifetimes by obtaining

modifications of the product limit estimator which incorporate some

parametric information and by studying the robustness of these estimators

to misspecification of the parametric model. Competing risk analyses have

been performed in the past and will continue to be performed in the

future. This study will provide the user of such techniques with an

alternative to the usual approach of assuming independent risks, an

assumption which most of the methods currently in use assume.
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2. ObJectives

The overall objective of this proposal is to continue our

investigation into improved estimation techniques for use in reliability

studies when there are competing failure modes or competing causes of

t failure associated with a single failure mode in data from series

systems. We shall term such experiments as competing risks experiments.

Our primary goal is to obtain improved nonparametric estimators of the

component failure distributions incorporating some dependence structure

between the potential component failure times. The specific objectives

are to continue our investigation into:

(1) the problems associated with dependent systems by

(a) investigating techniques which identify departures from

independence, based on data collected from series systems, by

making some restrictive assumption about the structure of the

system, and

(b) obtaining modified nonparametric estimators which incorporate

some restrictive assumptions about the structure of the systems,

(2) improved nonparametric estimators of component reliability based on

data from a series system with independent component lifetimes by

(a) obtaining modifications of the product limit estimator which

incorporate some parametric information, and

(b) studying the robustness of these estimators to misspecification

of the parametric model.
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3. Introduction to Problem and Significance of Study

3 Alvin Weinberg (1978) in an editorial comment in the published

proceedings of a workshop on Environmental Biological Hazards and

Competing risks noted that "the question of competing risks will not

a- quietly go away: corrections for competing risks should be applied

routinely to data." The problem of competing risks commonly arises in a

wide range of experimental situations. Although we shall confine our

attention in the following discussion to those situations involving series

systems in which competing failure modes or competing causes of failure

associated with a single mode are present, it is certainly true that we

might just as easily speak of clinical trials, animal experiments, or

other medical and biological studies where competing events interrupt our

study of the main event of interest (cf. Lagakos (1979)).

3 Consider electronic or mechanical systems, such as satellite

transmission equipment, computers, aircraft, missiles and other weaponry

consisting of several components in series. Usually each component will

g have a random life length and the life of the entire system will end with

the failure of the shortest lived component.

Competing risks arise in such reliability studies when

1) the study is terminated due to a lack of funds or the

pre-determined period of observation has expired (Type I

censoring).

2) the study is terminated due to a pre-determined number of -0

failures of the particular failure mode of interest being

observed (Type II censoring).

3) some systems fail because components other than the one of

interest malfunction.
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4) the component of interest fails from some cause other than the

one of interest.

In all four situations, one may think of the main event of

interest as being censored, I.e., not fully observable. In the first two

situations, the time to occurrence of the event of interest should be

Independent of the censoring mechanism. In such instances, the

methodology for estimating relevant reliability probabilities has received

considerable attention (cf. David and Moeschberger (1978), Kalbfeish and

Prentice (1980), Elandt-Johnson and Johnson (1980), Mann, Schafer,

Singpurwalla (1974) and Barlow and Proschan (1975) for references and

discussion). In the third situation, the time to failure of the component

of Interest may or may not be independent of the failure times of other

components in the system. For example, there may be common environmental

factors such as extreme temperature which may affect the lifetime of

several components. Thus the question of dependent competing risks is

raised. A similar observation may be made with respect to the fourth

situation, viz., failure times associated with different failure modes of

a single component may be dependent.

In our earlier work we have demonstrated that one can be

appreciably misled if one assumes independent component lifetimes when

they are really dependent. One purpose of this renewal is to explore

improved estimation techniques which incorporate some dependence structure

between the potential component failure times. An,)ther aim is to

investigate techniques which Identify departures from independence. A

third aim is to obtain modifications of the product lim. estimator in the

presence of independent censoring which incorporate somp parametric

information and to study the robustness of these estimators to

misspecification of the parametric information.
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In summary, competing risk analyses have been performed in the

past and will continue to be performed in the future. This study will

provide the user of such techniques with an alternative to the usual

approach of assuming Independent risks, an assumption which most of the

methods currently In use assume.
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4. Rewrrt of the Work During 9-1-82 to 12-31-87

3 We shall briefly review the work performed during September 1,

1982 to December 31, 1987 under Air Force Office of Scientific Research

grant number 82-0307 by providing a summary of the scientific manuscripts

arising from this work, and stating the publication status of such papers.

First we believe that substantial progress has been made in

assessing the error in modeling system life in a series system assumed to

have independent component lifetimes when, in fact, the component

lifetimes are dependent. The results of our study of the effect of

erroneously assuming independence is summarized in four papers. We have

investigated in detail the effects of this assumption for several

multivariate exponential distributions. Results for multivariate Weibull

and gamma distributions will be similar since these can be obtained from

3 the exponential by simple marginal transformations.

The first paper deals with the model proposed by Gumbel (1960).

Moeschberger, M.L. and Klein, J.P. (1984). Consequences (if

departures from independence in exponential series systems.

Technometrics, 26: 277-284. (Appendix A). This paper considers

the model

P(X > x, Y > y) = exp (-A1 x -2 y) [1 +0(1-exp(-AI))(1-exp(-22y)J

The effects of erroneously assuming independence on modeling

system reliability and system mean life are examined as well as

the effects of erroneously assuming independence on the

Marin-Grubbs (1974) confidence bounds on system reliability.

6



A second paper investigates the effects of erroneously assuming

3 Independence in both parametric estimation of component parameters and in

the Kaplan-Meier (1958) product limit estimator of the component

reliability.

Klein, J.P. and Moeschberger, M.L. (1984). Asymptotic bias of

the product limit estimator under dependent competing risks.

Indian Journal of Productivity, Reliability, and Quality Control,

9, 1-7. (Appendix B) In this paper it is shown that for a

general dependence structure the product limit estimator is not

consistent but converges to another marginal distribution which

can be expressed in terms of the system reliability and the crude

system reliability. When the risks are dependent and fall in the

constant sum cla3s of Williams and Lagakos (1977) then the

3estimator is consistent.

A third paper investigates the effect of the independence assumption

in both series and parallel systems for the Marshall-Olkin (1967)

distribution.

Klein, J.P. and Moeschberger, M.L. (1986). The independence

assumption for a series or parallel system when component

lifetimes are exponential. IEEE Transactions on Reliability,

Vol. R-35, No. 3, 333-335. (Appendix C) This paper shows that

for the Marshall-Olkin (1967) model the error in predicting mean

system life can be as large as 100% of the mean system life under

independence and the error in modeling system reliability, which

depends upon the mission time, can be as large as 200% for large

mission times.

7



A fourth paper compares the effects of the independence assumption

* for the three models of Gumbel (1960), the model of Downton (1970), and

the model of Oakes (1982).

Klein, J.P. and Moeschberger, M.L. (1987). Independent or

dependent competing risks? Does it make a difference?

Communications in Statistics Issue B-16, No. 2, 507-533.

(Appendix D) This paper considers errors in modeling system mean

life and system reliability for the above models. It also

examines the models with maximal and minimal correlations

(Frechet (1951)) and obtains bounds on the possible error one can

incur in modeling system mean life or system reliability.

These papers show that even for relatively small correlation there is

an appreciable estimation error one incurs in estimating the parameters of

the components.

Another line of research on the grant was to derive bounds on

component reliability when the failure models are dependent and fall in a

particular dependence class. The details for our approach are found in

the following paper

Klein, J.P. and Moeschberger, M.L. (1988). Bounds on net

survival probabilities for dependent competing risks. (To appear

in Biometrics) (Appendix E). This paper obtains bounds on the

component reliability, based on data from a series system, for

the Oakes (1982) model. Since this model has the same dependence

structure as a random effects model with w have a gamma

distribution, these bounds are good for a general class of

distributions. The bounds, which are determined by specification

of a range of coefficients of concordance, are found by solving a

8



differential equation in the observable system reliability and

*crude life on one hand and the unobservable component survival

function on the other hand.

A consequence of the previous research was the development of a test

for independence when the component reliabilities are known. Details of

this work are found in the following paper

Klein, J.P. (1986). A test for independence based on data from a

series system, Reliability and Quality Control, A.P. Basu, ed.,

235-244. North-Holland. (Appendix F). This paper provides a

modification of Kendall's test, based on the coefficient of

U concordance, for data from a series system. The test uses the

component survival probabilities to partially estimate the

probability of concordance or discordance. A Monte Carlo study

shows that this test has reasonable power for several underlying

models of dependence.

An additional line of research has consisted of examining the prnb]em

* of improving the product-limit estimator of Kaplan and Meier (1958) when

there is extreme independent right censoring. The results are summarized 

in

Moeschberger, M.L. and Klein, J.P. (1985). A comparison of

several methods of estimating the survival function when there is

extreme right censoring. Biometrics, 41, 253-260 (Appendix G).

This paper looks at several techniques for completing the

product-limit estimator by estimating the tail probability of the

survival curve beyond the largest observed death time. Two

methods are found to work well for a variety of underlying

distributions. The first method replaces those censored

9



observations larger than the biggest death time by the expected

U order statistics, conditional on the largest death, computed from

a Welbull distribution. The Weibull is chosen since it is known

to be a reasonable model for survival in many situations.

Parameters of the model are estimated in several ways, but the

method of maximum likelihood seems to provide the best results.

The second method replaces the constant value of the

product-limit estimator beyond the last death time by the tail of

a Weibull survival function. Again parameters are estimated by a

variety of methods with the maximum likelihood estimators

performing the best.

A second paper which has been developed along similar lines as the

one preceding follows.

Klein, J.P., Lee, Shin Chang, and Moeschberger, M.L. (1987). A

partially parametric estimator of survival in the presence of

randomly censored data. (Currently being revised for

publication) (Appendix H). This paper suggest an improvement of

the Kaplan-Meier product-limit estimator when the censoring

mechanism is random. The proposed estimator treats the

uncensored observations nonparametrically and uses a parametric

model only for the censored observations. One version of this

proposed estimator always has a small bias and mean-squared error

than the product-limit estimator. An example estimating the

survival function of patients enrolled in The Ohio State

University Bone Narrow Transplant Program is presented.

Another line of research has been developed which discusses some

general properties of a random environmental stress model. Suppose that

10



under Ideal conditions such as one might find in the laboratory testing

3 stage of development, the component hazard rates are hl (t), .,h . (t)

and that the component lifetimes of the p components in the series system

are independent. When the system Is put into use under field conditions,

there is a common environmental factor which simultaneously changes eachI-

component's hazard rate to whI(t), wh2(t) ,...wh p(t). We have

investigated this model when component lifetimes under independence are

exponential and w has a variety of distributions including the uniform and

gamma distribution (Sukhoon Lee's Ph.D. thesis under Dr. Klein). Also we

have studied this model when the components, under ideal conditions, are

of a Weibull form and w has a gamma distribution. Estimation of

parameters under the gamma stress model is considered, and a new estimator

based on scaled total time on test transform is presented. These results

3 were reported in a series of papers.

Klein, John P. and Lee, S. (1985). "On dependent competing

risks." Contributed Papers, 45th Session of the International

Statistical Institute, Book 1, 263-264. This paper surveyed the

random environmental stress model for series and parallel systems

focusing on the robustness of independence assumption in modeling

series and parallel systems.

Lee, Sukhoon and Klein, John P. (1987). "Bivarlate models with a

random environmental factor." IAPQR Transactions (To appear)

(Appendix I). Studies the probabilistic properties of the random

environmental stress model. General results characterizing the

dependence structure are obtained and several specific examples

are considered.

11



Lee, Sukhoon, and Klein, John P. (1987) "Statistical methods

for combining laboratory and field data based on a random

environmental stress model." (Submitted for publication)

(Appendix J). In this paper we assume the environmental stress

model with exponential distributions for the components under

ideal conditions and w having a gamma distribution. The type of

data available consists of component data collected under ideal

conditions and system failure data collected under operating

conditions. Maximum likelihood and method of moments estimation

of model parameters is considered as well as a least squares

estimator based on the total time on test transform. The problem

of experimental design is also considered In detail.

A final paper in this series is

5 Klein, J.P. and Lee, Sukhoon. (1986). A random environmental

stress model for competing risks. (Submitted for publication)

(Appendix K). This paper, which was presented at the 1986

Missouri Conference on Reliability and Quality Control surveys

the results reported in the above aspects.

Another paper which was co-sponsored by this grant is

Klein, J.P. and Basu, A.P. (1985). Estimating reliability for

bivariate exponential distributions, Sankhya B:47, 346-353.

(Appendix L). This paper considers the problem of estimating

reliability for the bivariate distributions of Block and Basu

(1974) and Marshall and Olkin (1967). For the Block-Basu model,

a minimum variance unbiased estimator of the joint survival

function is obtained in the case of identically distributed

marginals. For the non-identically distributed case, the

12



performance of the maximum likelihood estimator and the

jackknifed maximum likelihood estimator is studied. For the

Marshall-Olkin model, the performance of several different

parameter estimators and bias reduction techniques for estimation

of joint reliability are considered.

Finally, the most recent manuscript prepared under this grant was

Klein, J.P. and Moeschberger, M.L. (1988). The robustness of

several estimators of the survivorship function with randomly

censored data. (Submitted for publication). (Appendix M). This

paper studies the efficiency of the Kaplan-Meier and the fully

parametric approach in estimating the survivorship function when

a particular model such as the exponential, Weibull, normal, log

normal, exponential power, Pareto, Gompertz, gamma, or bathtub

shaped hazard distributions is assumed under a variety of

censoring schemes and underlying failure models. We conclude

that In most cases the parametric estimators outperform the

distribution free estimator. The results are particularly

striking if the Weibull form of these estimators are used

routinely.

All the results found in the preceding papers have been presented to

regional, national, and international statistics, reliability, and quality

control meetings.

13



References

3 Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability
and Life Testing - Probability Models. Holt, Rinehart and Winston,
Inc., New York.

Block, H.W. and Basu, A.P. (1974). A continuous bivariate exponential
extension. J. Amer. Statist. Assoc. 69, 1031-37.

David, H.A. and Moeschberger, M.L. (1978). Theory of Competing Risks.
Griffin, London.

Downton, F. (1970). Bivariate exponential distributions in reliability
theory. J. Roy. Statist. Soc. B. 32: 408-417.

Elandt-Johnson, R.C. and Johnson, N.L. (1980). Survival Models and Data
Analysis. Wiley, New York.

Frechet, M. (1951). Sur les Tableaux de Correlatoin Dont les Marges Sont
Donnees. Annales de l'Universite de Lyon. Section A, Series 3, 14,
53-77.

Gumbel, E.J. (1960). Bivariate exponential distributions. J. Amer.
Statist. Assoc. 55: 698-707.

Kalbfleisch, J.D. and Prentice, R.L. (1980). The Statistical Analysis of
3 Failure Time Data. Wiley, New York.

Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from.
incomplete observations. J. Amer. Statist. Assoc. 53, 457-481.

Lagakos, S.W. (1979). General right censoring and its impact on the
g analysis of survival data. Biometrics 35: 139-156.

Mann, N.R. and Grubbs, F.E. (1974). Approximately optimum confidence
bounds for system reliability based on component test data.
Technometrics 16: 335-347.

Marshall, A.W. and Olkin, I. (1967). A multivariate exponential
distribution. J. Amer. Statist. Assoc. 66, 30-40.

Oakes, D. (1982). A model for association in bivariaLe survival daLe. J.
Roy. Statist. Soc. 44, 414-422.

Weinberg, Alvin (1978). Editorial. Environmental IniernaLional 1:285-287.

Williams, J.S. and Lagakos, S.W. (1977). Models for censored survival
analysis: Constant-sum and variable-sum models. Biomet'ika 64:
215-224.

14



APPENDIX A



UNCLASSIFIED
- - tiUiT? CCtVSIICArION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

' NA
2b. O(CLASSIFICATION / DOWNGRADING SCHEDULE Approved ror p'iC ,*'SaSO;

NA' distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicabJe)

The Ohio State University AFOSR/NH

6C. ADoRESS (Gy., State, and ZIP Code) 7b. Af/t , State, and Zip Code)

1314 Kinnear Road Bldg 410
Columbus, Ohio 43212 Bolling AFB DC 20332-9448

o. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If apiabit AFOSR-82-0307

AFOSR [ NM_
State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

Bldg 410 ELEMENT NO. NO. NO. ACCESSION N4.

Bollin8 AFB DC 20332-6448 61102F 2304 I
11. TITLE (In~lude Secu~riy Caffcaon) Consequences of Departures From Independence in Exponential

Series Systems

12. PERSONAL AUTHOR(S)
M.L. Moeschberger and John P. Klein

3 13s. TYPE Of REPORT 13b. TIME COVERED 114. DATE OF RER, CON

! Final FROM9-1- 8 2  Td2-31- 8 7  May31, u88

16. SUPPLEMENTARY NOTATION

17. COSATI CODES S 1. SUBJECT TERMS (Continre on reverse if necessary and identify by block number)

FIELD ( GROUP j SUB-GROUP competing risks; component life; modeling series systems;

robusthess studies; system reliability; Gumbel bivariate

I exponential
SABSTRACT (Continue on revere if necesary and identify by block number)

This article investigates the consequences of departures from independence when the compo-

nent lifetimes in a series system are exponentially distributed. Such departures are

studied when the joint distribution is assumed to follow a Gumbel bivariate exponential

model. Two distinct situations are considered. First, in theoretical modeling of series

systems, when the distribution of the component lifetimes is assumed, one wishes to compute

system reliability and mean system life. Second, errors in parametric and nonparametric

estimation of component reliability and component mean life are studied based on life-test

data collected on series systems when the assumption of independence is made erroneously.

I Systems with two components are studied.

I
20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION

I OUNCLASSIFIEDJNLIMITED [B SAME AS RPT 0 OTIC USERS UNCLASSIFIED

122a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (InClude Area Code) 22c. ?gICE SYMBOL
Maj. Brian Woodruff (202) 767-5027 [

DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF -HIS PAGE
All other editions are obsolete.



TECHNOMETRICS L VOL 26. NO. 3. AUGUST 1984

I Consequences of Departures From
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This iticl investigates the conscquences of departures from independence when the compo-
nent lifetimes in a senes system are exponentially distributed. Such departures arm studied
when the joint distribution is assumed to (ollow a Gumbel bIvariate exponential model. Two
disi c situations arc considered. First. in theoretical modeling o( series systems when the
dis.ibuton of the component liftimes is assumed. one wishes to compute system reliability
and mean system life. Second. errors in parametric and sioeparanmetric estimation of compo-
nent reliability and component mean life are studied based on lifecs data collected ON series
systems when the assumption of indepniden is made er eousdy. Systems with two com-
ponents are studied.
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studies. Sysim reliability; Gumbel bivaria e itionettial.

i 1. INTROOUCTION 1976. and Basu 1981 for a discussion of nonidentifia-

Consider a system consisting of several components bility results.) In many situations one may be appre-
linked in series. For such a system the failure of any ciably misled by the independence assumption.
one of the components causes the system to fail. Lagakos (1979) in a study of the effects of various
Common assumptions made in modeling and ana- types of dependence among component lifetimes,
lyzing data from such a system are that the compo- notes that most methods of analysis have assumed
nent lifetimes arc independent and exponentially dis- noninformative models of which independence is a
tributed. Many authors have considered the problem spcial case. He points out, 'it is important to be
of analyzing a series system with exponential compo- aware of the possible consequences of making this
nent lives. For example, confidence bounds for system assumption when it is false" (p. 152). Furthermore,
reliability assuming independent exponentially dis- Easterling (1980) states in his review of Birnbaum's
tributed component lifetimes were presented in Mann (1979) monograph on competing risks, -there seems to
(1974) and Mann and Grubbs (1974). (See Mann. be a need for some robustness studies. How far might
Schafer. and Singpurwalla 1974 for a more compre- one be off. quantitatively, if his analysis is based on
hensive review.) More recently, work invoking the incorrect assumptionsr (p. 131).
assumption of independent exponentially distributed In this article we consider the consequences of de-
lifetimes has been presented by Chao (1981) and Mi- partures from independence when the component lifc-
yamura (1982). Estimation of component parameters times are exponentially distributed. Such departures
from series system data has been treated by Board- may be related to some common environmental factor
man and Kendell (1970) in the context of independent that is present only when the components are linked
exponential component lives. Some authors suggest a together in series. The load each component is subject
nonparamctric alternative to the estimation of com- to is either reduced or increased according to the age
portent reliability based on series system data (com- of the system. To study such departures, we have
pare Kalbfleisch and Prentice 1980 and Lawless 1982). selected a model proposed by Gumbel (1960).

The assumption of independence is essential to Gumbel's model retains the assumption of exponen-
these analyses and an important concern. Several au- tially distributed component lifetimes while allowing
thors have shown that this assumption, by itself, is not the flexibility of both positive or negative mild corve-
testable because based on data from a series system. lation between component lifetimes.
there is no way to distinguish between an independent The effects of a departure from the assumption of
and a dependent model. (See Tsiatis 1975, Peterson independent component lifetimes in a series system
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will be Addressed (of two distinct situaions. Thc first Suppose that thec actual joint disihution of (N..
-it uation arises in modeling the performance of a the- X2) his the form proposed by Gumbecl1960). namely.
oretical series system constructed from two compo- PXI>X ' c
ocnits whose lifetimes ame exponentially distributed. PX£>. 1  z>i)=(x *r 1 x)
Here. based on testing each component separately or X (I +a([ -exp I-ilzlXl -exp ;.2 -11:))] (2.2)
on engineering design principles, it is reasonable to Teon rbblt est fX.X)i
assume that the components are exponentially distrib- Thontpbbitydstyf(X.X i
uted with known parameter values. Based on this f(x,. x,~) =A~Iexp (_-,.%I - iz xi)
information. we wish to calculate parameters such asx(I+0 i
the mean life or reliability of a series system construct- I+(ep~.x) I
ed from thewe components. In Section 2 we describe 9 (2 cxPI - oi 2 - 1 )), (2.3)
how the values of these quantities are affcted by where in both (2.2) and (2.3), x I- Z ;~ ., ;.2>
departures from independence when the component - 1 :5 a :5. This distribution has marginal survival
parameters are completely specified. In Section 3 we functions equivalent to those for the independent
study the performance of the Mann-Grubbs (1974) mdl hci at sterao o hom tconfidence bounds on system reliability for small mh orelawihon prtenX, is p re=o f/4r choang it=
sample sitecs and for varying degrees of correlation, Thequcorreato betee X ein isepe , nd Fo a 0
when the component parameters are estimated from Is qiaett ~ 2 bigidpnet ocompoent ata.(<0) the components are pwositively (negatively)
chmponn data. io inovsmkngifrne quadrant -dependent (see Barlow and Proschan 1975).

about component lifetime distributions, reliabilities, Futeroe th-odtoa xetto fX ie
and mean lives from data collected on series systems. ,=X.'
Commonly. data collected on such systems are ana- EV, I X I -; I +p- 4 p exp I-A 2]
lyzed by assuming a constant-sumn model, of which A,
independence is a special case (compare Williams and If (X1. XI) have the joint distribution (2.3). t hen t he
Lagakos i977 and Lagakos and Williams 1978). In tu ytmrlaiiyi
Section 4 we study the properties of the maximum tu ytmrlaiiyi
likelihood estimators of component parameters calcu- F(l) - P~min (X 1. X 1)> t I dependence)
lasted under an assumption of independent ex- - ezp (-At)(l + 4 1X I - exp -s)
ponential component lifetimes when the component
lifetimes are Gumbel bivariate exponential. Because of X (V - exp MIa)] (2.4)
the widespread use of nonparametric estimates of From (2.1) and (2.4) we see that the error in mod.
component reliability, We 21SO Present in Section 5 the clnsytmrialtys
estimation error of the Kaplan-Mcicr (1958) estimator clnsytmriaitys
when the assumption of independence is made er- Amf - Pat~) - f
roneously. - 4 p(l - xp-~ ( -xp (-;., t]

2. MODELING SYSTEM RELIABILITY FROM X exp (-(. 1 +.4)) (2.5)
COMPLETE COMPONENT INFORMATION Note that IAfIII increases as lpIl increases, for fixed ;,.

Consider a two-componenit series system with ;1.- and t. The magnitude of AMa.of course, depends on
component life lengths X,. X,. Suppose that Xj has ;l. ;1. t. and p. When i 1 - ;,- 0. onc can show that
an exponential survival function 6(t is maximized at t - (in 2]/40 (fixing p and 0). The

r.W =P(X.> 0 cxpvalue of I Aft) I at this point is I p 1/4. which is at most
= PX, r)- ep ~1116. Representative values of Pfar) for ;., 1, * 2 =

A'. > >0. i - 1. 2. 1.5. and p = -. 25. -. 125.0. .125, and .25 are plotted
Thisassmpton s mde n th bais f etenive in Figure 1. Thc curve with p - 0 corresponds to (he

thsing asupto iac cmadonen sptel basi on ektnsive system reliability if the assumption of indcpendcncc is
tedtige of hec compolynen epharatel o are knwl true. Since most applications of interest involve relia-
vadge of th, i asu dy nom chn is f f,,aciure .h bilities of(.75 or greater, in Figure 2 we plot the rutio
vdlet of (he i tissmed known sytmfailu re ia ndexe. of the 100 pth upper percentiles under'depcndence and
-nt.en dithibtimo sstem failurae ha +n independence versus the correlation. I-om F'igure 2 1(

pond nima istmrib in ith filen raeby appears that when the predicted system relabiity
and he ystm reiablit is ive byunder independence is greater than .90. misspecifying

Ft)- ~mn X, X)> t Iindependence) the dependence parameter has little effect. In the range
P~mi (Xe X,)where the predicted system reliability under indepcn-

= exp 1 A) (2.1) denice is less than .75. howevet. misspecifying the dc-
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o-o -

j. 0e. .. o
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'b.::::ti Do SG 10 oA 890

Figure 1. System Reliability for Gumbel's

Model. A - 1.2,m 15..

pendence parameter may lead to errors exceeding 
6 %. 4 n -0 ,1 0.0s 0.1s 0.*

Maximum values ofl A(t)l are presented in Table I for CORREL.A ION

At - I and various values of3.l.  Figure 2. Ratio of 100 pth Percentile Under De-

The mean time to system failure based on (2.1). pendence and Independence Versus Correltion for

* assuming independence, is A, = I. A2 = 15.

" I/A, + 12)2 (2.6) I Pl increases and is a function of the relative sizcs of A,

and A, In particular, when the mean life of one corn-
and that based on (2-4) is ponent is substantially greater than the mean life of

I the second component, then the behavior of the

Ao = (A3, + A ) system is well approximated by the behavior of the

shorter-lived component acting alone. This can be

+41 23- 1 seen in (2.4) and (2.7) by letting , - 0. In this instance

_ -) 2A,+ A,) (A + 2A,)" we also see, from (2.5) and (2.8). that the amount of

(2.7) error incurred by assuming independence is negligible.

3. ESTIMATING SYSTEM RELIABILITY
The amount of error in modeling system mean life is FROM COMPONENT DATA

6pAA A common practice in predicting system reliability

o - (A, + AIX2A, + A2XA, + 2A,) is to test each of the components independently and

then to use the data to obtain confidence bounds on
6pAjAp, (2.8) Table 1. Maximum Values of IA(t)IforA, -

(2A, + AXA, + 2A,) and Various Values of A2

whose absolute value obviously increases as I PI in-

creases. If A, - A3. this error reduces to 2 pu, / 3. which A, M I &(I) I

has a maximum absolute value of1u,/6. 2 .056

it is apparent from Table I and Equations (2.S) and 4 .04

(2.8) that the error in modeling system reliability and a .025

mean system life, based on independence, increases as

TECHNOMETRICS ?). VOL. 26. NO 3. AUGUST 1964
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system relaiability. Ilhese bounds. obtained by Mann Table 2. Estimated Coverage Probabilities
and Grubbs (1974), assume that thc component life- for Mann -Grubbs Bounds
times are exponential and that (he components act 10. ,= 5
independently when linked in series. In the bivariate
case thfe bounds are computed as follows: For thc jt h CoOfeiaboA,

component, suppose that n, prototypes have been , 25 is 05 0 0 iS 25
tested until r, ( n1) failures occur. Let ZI be the total ---- ___

3 3 95 93 41' 94 11* 94 74 9505 9S27 9500W 96422'
time on test for the ith component. Define 3 3 So 6? air e 42' 69 32' 6976 9020 91 IS' 92 15'

3 3 7S 71 03* 72 St 7413' 7488 76S8 77 34- 7661'

(r,- )7 - l)IZ' (1 S 9S 9319' 94 04' 9490 " 26 2S 62' 96417' 9681'*
Av: (r - ljZj1/Z 1 (. 90 817'?' 68 6965 9039 91 10 92 13' 9314'

S57S 6966W 7202' 7410W 7513 ?6 14' 78 32 90 03'

and 10 10 95 nor3 93 42 SAs SOe 09St*" 96 42' 97 14'
10 10 90 8593' 87 70* 09 34' 9021 9105'* 92 56' 93 93'

- -*, ( 1 I)Z (3) 10 10 75 67 77' 70 0W 74 12' 7563 770OS' 79607' 62 56'

~ (, -I ) Z'As leba Iwo Ma4WO w0-abov OWSpec~iqd leve
*Al $*"1 1-0 Utandaed .- a.6 0040- iWCc,flud lave$

NOTE Stanittd0w~oia the above ev.EIs ie & PWoo*'ffI 218. ie
An approximate ;-level lower conlidence bound ror 954-0 3frit 90i..el and 610,ihe 7S5w...
system reliability at time t_ is

exp [ -tM 0l - V/1(9M46) + 1,.(v) 1 113 Af~~] reliability at:I is an increasing function or p so that
asymptotically coverage probabilities approach 0 (or

(3.3) 1) for p < 01(>0). For sample siz.es in the range of 3 to

where q. is the 100-/ percentile of a standard normal 10. the estimated coverage probabilities for p < 0 are

random variable, statistically significantly lower than expected. On the

When the system being evaluated has dependent practical side, however, they are not of sufficient mag-

comnponents. these bounds may be misleading. The nitude to cause great concern. especially at 7 - 95.
problem is that component data are independent. 4. PARAMETRIC ESTIMATION OF
since the components are tested separately. but when COMPONENT PARAMETERS
they are put together into a system. some interdepen- In this section we are interested in examining how
device may develop. Of course. such dependence is noit teidpnec supinafcsteMg eo
detectable in the absence of somne system data, sihnnepneceasmtonafcs h aniueo
the data on components we see are independent. To the estimation error in estimating component mean

study the performance of the bound (3.3) when the life from data collected on series systems. That is, for

correct system model is the Gumbell model (2.2). a each system tested. we observe its failure time and an

simulatio'n study was performed. For each simulated indicator variable that tells us which component

sample, Pi observations from exponential populations caused the system to fail. We are interested an how
withmea ll.i.j = . 2 wee smulaed.Thetwo varying degrees of dependence affect the bias and

samples were generated independently. The confi- mean s44uarcd error (MSE) of the maximum likcli*
dcnc bond 3.3 wasobtine. Tis ws ten om- hood estimator of component mean life obtained by

patred to the true system reliability at various jois asiuming 'idcpenidcnt component lifctime-..
We Assumc that the two components* survival func-

obtained from 12.4). Ten thousand such bounds were tosaeFt i i) a1 .adalf eti
simulated for each set of parameter values. The esti- lin reFo-x .,ti=I .adalf eti
mated coverage probabilities for the Mann-Grubbs conducted by putting n systems on test. We observe n,

bounds tic., the proportion of times that the Mann- systems filling because of failure of the tith component.

Grubbs intervals assuming Independence actually i = 1. 2. Let T denote the sum of all n failure times.

conlaincd the true svstem reliabilityl for n,i.,n = 3. ro MochArg ad1vi(97,thmxmu

5. 10. 0.1 = V0. A*, - 1. 5. at g,* s .1 are reported in likelihood c%imator of,._ ass~uming independence, is

Table 2 1 lerc thc true -ytem reliaiility under depen- 1.,~ . 2.
dence rinucs from 76X4 .11, is - 25 to .7891 at

i= 25. with a value of 7788~ a( It 0 iu. ie csiimator of component mean life. it, =; is

Thc rcsult. in rahiti 2 show that it hieh neg~iaive l if #I. > 0 (4-11
corrclai iin%, the coverage prohahilitacs are signiti.
emnily lower than claimed under independence. and Now -uppose that we arc in fact sampling from the
for a high positive correlatin, the intervals arc con- Giambeil disrihution (2.31 1For this model, componcnt
%rvative. Tia trend becomes iore cxaggcrated a% #1,. mcan life is the iwine i% in the independent casc. The
": iiic;rcasc b-cajuse6 the bound approaches the rcliabul' random variables (n.. Il arc independent (the con-
iy under independence. As seen in Section 2. the true diionail distibhution of T given to, is free tifoenli.mnd n, is

TECHNOMETRICS o'. VOL 26. NO 3. AUGUST 1984
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binotnlal with parameters n and p, = 111min (X,. laioii and doininalcs for large I. 1 plillhroaching hc

m1 = ,,. 1-Or tis natkli . 1,,)1J of 21'1p 1

,= l.,< " When =

.21' 2 - 2,1 + 31 2, i)'r 2=
7 - + - 2" -S• hi ( 5I ( 1" ) 911(0 S1 sk 31,, + : (-,+ ;.X z ' ,', ,- + 2 _,

(42) t {(Igi - 21)j + 20a "IX,l I)1,2 (4.11-

with p2 = I - p,. From Mcndenhall and Lehman As in the bias cxprcssion. the MSiI reflects a sampling

(1960). approximations to the moments of I/n,. con- error term and a modeling crror term The modeling

diional on i, > 0. arc error is a quadratic function of pj for fixed ". For

- 2 n > 5. this error Is increasing in j, for
E(1/,), >0O) - 4=

,(t - ) I (19n -- 21)I,> - -

and 4 (n - 31n - II

(it - 2Xn - 3) and decreasing in it for

.I'. I " , > 01 = 1 2) (4.4)
I (19% - 211

where ai = Is - ip, The expected value of T is given 4 <  4 - 2I -- I)

by nji.. where p,, is given by (2.7) and

2 + I0, ( I For samplc sizes between 5 and 21. the modeling

f W 1  81 e error, and hence the MSE. is a strictly increasing

1(4.1 + A.2) ((24. + 42) function for all pII [- . . For n > 21. tic mtn-
I \I mum MSE is achieved at p < 0 As is approaches -..

+ 2 )1 + n(n - I)i,2. (4.5) the value at which the smallest MSE occurs tends in 0(;,+ 2;Zvz
For unequal component mean- a similar result

Thus. the bias and MSE of i,,. conditional on is, > 0. holds. Figure 3 shows the bias as a function of p for

under (his modcl are

H(fi,) = IAi, - lw) = ,- , (4.6)[(n - X,- )

and
MSE (,1,) = F(T 2)I-(IIn, > 0)

2,n -2)pn 2,[ p(,, -l p I]+ . (4.7) ,

/ /

for i = 1.2.

We note that for large samples.

/ 7/Jim. B(fi,) = 'g. -l,(4.8) , . /

11i11 MSIF Ili,) (Ism H(i) ~ 14.9) / 7o 7 7,"

fort = 1.2. For . = t, from (4.61. we see that X "

I + 2(,n - 241-3 7 -7 -

n - 3 3t - 3) (4.10)

A similar expression holds for l11',). Note that (4.10)

consists of two terms. The lirst term. reflecting sam- j 1s .ris 7a; - -

pling error, is positive for all n and dominates the bias CORELAIION

expression for small It. The second term. reflecting Figure 3. Bias of A, Under Gumbel's Model for
modeling error. takes on ihc sante sign ;%% the corrc- I., = 1 . ,. = 7 5.

TECHNOMETRICS . . VOL 26. NO 3. AUGUST 1984
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0 conditional survival probabilities. na.mely. by

-~~4 so. n i

where ji. x) is the largest value ofj for which x,, < x
A special note is needed to cover the case in which

x.,is not the largest observcd death. To avoid this
problem. we shall define r,(x) - 0 tot x greater than-

Cl the largest observed failure time.
If the component lifetimes in fact follow the

Gumbel bivariate exponential, we can sce that the
Kaplan-Meier estimator is not consistent. For i= I,
the Kaplan-Meier estimator Is not estimating F,&).
but. rather. another survival function. I?7,(o,. given by

-x (I +4 fl4p(I "I- e-A.]d

CC - ----- t >' 0>. (5.1)-Z1 .0. Is .0.0s 0.0'. 0.1s 0. Is
cowi rI CimO Note thatj4 if A, m 2 (5.1) is simplified to

Figure 4. Ratio of I'MSE (jig Ip)/MSE (ji p - 0)R) - e-"[I + 4p(l - e-*)X]iiZ (5.2)
for Various Sample Sizes n and for A, = 1. A, 15. which is increasing in p. Similarly. A'2(t) is actually

estimating 111(). which is defined analogously.
various sample sizes when L 10 and i, -1.5. Measures of the error in estimating FA:) by P,0r) are
Figure 4 depicts the ratio

as a function of po for various sample sizes when A,

5. BIAS OF THE PRODUCT
LIMIT ESTIMATOR

A second approach to the problem of estimating
component parameter'. is via the nonparametric esti-
mator proposed by Kaplan and Meier (1958). Investi-
gators who routinely use nonparametric techniques :
may take this approach in hopes of obtaining esti- ;
mators that are robust with respect to the assumption
or exponentiality The purpose of this section is to
show that such estimators are not ncessarily robust
with respect to the aissumption of independence when
the marginals are, in faict. exponential.

The product limit es.tim"ator, assuming independent
risks, is constructed as follows. As before, suppose n-
systems are put on test at time 0 and n, systems fail o-

owing to failure of component i. Let X X

denote the ordered times at which thes ii, events
occur and letr.,1 ..... r, be the ranks of those ordered -o je iu
survival times among all nt ordered lifetimes. The com- I(I
pontent reliability for the ith component at time x may Figure 5. BiaS of Kaplan-Meier Estimate. (r)
no- be estimated by the product af the individual J., W . A,- I S.

TECHNOMETRICS (0 VOL 26. NO 3. AUGUST 1984
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the bias and MSE of ,'t) computed under the depen-
dence modcl. Under this model, the Kaplan-Mcicr
estimator is equivalent to the estimator one would
obtain based on n observations from an independent
system with component survival distributions R1,
given by (5.1) or. if A, - A,. by (5.2). Hence from
Kaplan and Meier (1958). the variance of F4t) is given

by

) = 1411) ' I dq,(,) (53)

Thus from (5. 1) and (5.2). the bias and MSE of PAt) are

= lt1 -0,(t), t > 0, (5.4)
and

MSE (P,(t)) = (?,(t) - Ft))'
J z I Idflu) I

+ R,(,) I IRul > 0. (5.5)

The estimator is not consistent, since 8(FAt)) is inde-
pendent of n and not 'necessarily zero. Also, MSE
(PA)) consists of a factor that depends only on the
model error and is free of sample size and of a term
that tends to 0 as n tends to infinity. , . #. . .i. 00 i W .6

Note that in the case of equal component lifetime [HE

distributions, A, -, -"0, the bias determined from Figure 7. MSE of Kaplan-Meier Estimate, P, (t).
(5.2)and (5.4)simplifies to A, = 1. A,= 15.n -50.

B( (t))= e-0{[I + 4(l - e-)1]I1 -2 1). (5.6)

In the general case, the integral in (5.1) needs to be
0' evaluated numerically. The bias of the Kaplan-Meier

estimator was calculated for various values of A and
* .p. A representative plot of the bias appears in Figure

5, where 1, - 1, A2 - 1.5, and IpI - 0,.125. .250. It is
apparent that the bias is largest for values of t in the
neighborhood of an interval that captures the mean

* .. e component lifetines. The absolute value of the bias
~ • . .ranges from 0 to. I I in this example.

- MSE (, t)) was calculated for various values of ,
n, and p. Its magnitude is typified in Figures 6 and 7,
where A, - I, A2 - 1.5, and n -- 10. 50, respectively.
For A, - - A2 = 1.5. and n - c, MSE (P(t)) may be
obtained by squaring (5.4) or by squaring the ordinate

o, values in Figure 5. The MSE of the Kaplan-Meicr
= estimator may be quite large for small sample size n

and moderately large for large" p. the former being a
more crucial factor than the latter.

6. SUMMARY

The results presented here show that for the
Gumbel model, one may be misled by falsely as-
suming independence of component lifetimes in a _

%.00 G.Se 00. '.se i.. i. .. series system. In modeling system reliability based ont i, complete information about two marginal component
Figure 6. MSE of Kapln-Mei., Estimate. P,(t), life distributions. effects oferroneously assuming inde-

A, -. A, 15.n .. 10. pendence ofcomponent lifetimes is most pronounced

TECHNOMETRICS f. VOL. 26. NO. 3. AUGUST 1984 -
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for system reliabilities smaller than .75. For system Estimators of Reliability Wo h-1-0-0 System in the Indepen.

reliabilities larger than .90 this effect is too small to be dent I-.spoanisuil CAM". Jnal 4 the Avem Statitcal As- -

of practical interest. The effects of a departure from suklt 76.e 720n se724.w o

independence on the Mann-Grubbs bounds for sml Comporting Ais by Z- W. Birubaunt. Terkeuneirks. 22. 131I-
sample sizes seems to be negligible for confidence 132.
levels greater than .90. But for either large sample GUM8EL_ E J. (06%0). tivaiate Expoential Distributions.-

sizes or smaller confidence levels, one may be appre- Jswfiel 4afte America Stadgi' Assocaion. 55.699-707.

ciably mild KALOFLEISCH. J. 0,. astd PRENTICE Rt. L (19801. The Siatis-

For the dual problem of estimating component re- sicai Anilya of FaiJwr Time Dare. New York: John Wiley.
KAPLAN. E. L. and MEIER. P. (1958L. Nonparanetnc Este--

liability based on data from a series system it appears maio From. IncompleeObser on..' Jouewif 41e Anmericas
that departures from independence are of a greater Statistical Assmdarit. 53. 457-43 1.

consequence. Both parametric and nonparameusic as- LAGAKOS. S. W. (1979). -Ct1a Right Cansonag and Its

tinmators of relevant component parameters are incon- Impact 00 the Asalysis of Suniari Dam", Ian~rEIS. 3S. 139-

sitent. Although under independence, the bias of the LAGAKOS. S. W. ad WILLIAMS. 1. S. (19761. -Modcls for
estimators of interest clouds the issues. it is clear that Cen.wad Suasiwal Analyis: A Cone Class of Vanable.Suin

for larger negative correlations these estimators tend Models.' icamp"d63. 181-189.

to underestimate the parameter. whereas for large LA WLESS. J.F. I 9M aratArand MhodsI~ for Lifetime

positive correlations, the reverse is true. "aa New York: Jobe Wiley.
MANN. N. S. 11974. -Simpkhad Expresions for Obtaining Ap-
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A common assumption made in analyzing competing risk experi-
meats is that the risks are stochastically independent. Under that
assumption the product limit estimator is a consistent estimator of the
marginal survival function. We show that when the risks are not
independent the product limit estimator converges, with probability one,
to a survival function which may not be the same as the marginal
survival function of interest.

1. INTIR UCMO N

Competing risks arise in a wide range of life testing problems.
Typical areas of application are the study of series systems in the
engineering sciences and biological systems in the medical sciences.
An important area of application is the analysis of censored data where
some systems or individuals are lost or withdrawn from a study prior
to observing the endpoint of interest. Competing risks are often
modeled by a vector T = (T I, .... , Tp) of nonnegative random

* 'variables representing the potential times to failure from each of the
* p causes. * We cannot observe T directly but instead we see the system

failure time Y - min (Ti, i - 1, ... , p) and the failure pattern
E(T)um Isuch that y=T for isl and Y<Tr i 1, where Is/ the

1*
d
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mt of all subsets of 1, .... , p. Based on this information we wish
to estimate the marginal survival probabilities

(t)W - P (min M , ) > 4), 1 >o, 1 a .

A common assumption made in analyzing competing risk experi-
mets is that the Ti's are independent random variables. Such an
assumption is not testable due to the identifiability dilemma (see Basu
(1981)). Under an assumption of independent risks a consistent esti-
mator of S, (t) is the Kaplan-Meier (1958) product limit estima-
tor. In Section 2 we show that, if the risks are dependent, then the
product limit estimator may be an inconsistent estimator of Sz (t).
The quantity to which this estimator converges is obtained so that one
may investigate the estimator's robustness to departures from indepen-
dence. In Section 3 we illustrate such robustness considerations for some
well-known bivariate exponential distributions.

2. INcoNsIzNCY oF THE PRODUCT Lim EsriMAToR

The Kaplan-Meier product limit estimator is constructed as
follows. Let 0 = T(o) 4 Y(z) < ... (,) denote the ordered system
failure times of x systems put on test. The product-limit estimator of
S, W( is

k (t - 1Z, [(n - itI(n - i + 1)] (2.1)

where the product is over the ranks i of those ordered observations Y('),
I 14 x a, such that Y(I) 4 t and Y10 corresponds to a death from the

simultaneous cause (s) j g J, J n Io 4. S" (t) is undefined for t > Y(.)
if the largest failure time corresponds to causes in J where J (1 1

If the assumption of independence is correct and the crude proba-
bility functions defined by F(t, I) - P (Y> f, E(T) -I) have no

common discontinuities then Langberg, Proschan and Quinzi [LPQ
(1981)] have shown that the product limit estimator is consistent. They
also show that if the F (t, I)'s have no common discontinuities then for a
very particular form of dependence structure the product limit estimator is
consistent. We note in the following theorem, that their results can be
used to study the robustness of the product limit estimator to departures
from independence and that, in general, if the risks are dependent then
the product limit estimator (2.1) is inconsistent.

2
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7her 1.
Lot T T- ( 1 , ... , Tp ) be a vector of non-negative random variables

with system life Y = r ( TI, ..., rp ) and failure pattern

kT) - [, ifY =-Td, I I and Y<Ty, j* (2.2)

S=a , otherwise.

Define F(t) mP(Y> t), I(t,) -P(Y<t £(T)m ), IY t,

t>O, andlotic(F) =(t:P(t)> 0) be the support of P. For 181

defie v ={$S I:.A In # 0 ). Based on a random sample of size n

let &,z,. (t) be the product limit estimotor (2, 1 ). If the functions F( , 1)

have no common discontinuities on [ 0, ,t ( P)] then

) .17 0(t) as. (2.3)

where

-(t) - 17 ((a) / pr( C) Ip- oI (dF (., 3)/F)),
a~t

L 04 t < . (F). (2.4)

where the product is over the set of discontinuities of F (, 1) and
F(, J ) is the continuous part of F ,).

Proof
The proof follows directly by applying the results of Langberg,

Proschan and Quinzi [ LPQ (1978) ] and LPQ (1981). By

Theorem 4.1 of LPQ ( 1978 ) T m? ,.H where H is a vector of ( 2 - 1)

independent components indexed lexicographically by 1 8 I with

P (,H, > t) = C (r) given by (2.4).
(T' LPH if P (I> t, ) = P -P(min H > t, E (H)--).

Let T = (Tj, .Tp). 1 1. , n be independent and identically

distributed as T. Replace F and F(', J) in (2.4) by their empirical

counterparts F.1 (l) = X Y >t}I/n and F,,(t, J) -- X{TY < t,

3
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(rT) - J) / a, to obtain G,, 0 (t). Here X (A) is the indicator function

of the set A.

By Theorem 4.7 of LPQ [19811 (,,t) -4. 4j (t) a.s. for J aI.

Routine algebraic manipulation shows that S1 ,.(t) J17 G, u (t) so the

result now follows Q,

In general, as seen in the examples in the following section,

ZZ 4! (t) 96 S (t) so that an investigator may be seriously misled by
J all

incorrectly assuming that the component lifetimes are independent. This
has been noticed by Fisher and Kanarek (1974) in the problem of analyzing

clinical trials with censored data. Theorem 1 allows an investigator to
quantify the effects of the independence assumption by computing the
right hand side of (2.3) for some plausible dependent n.odels.

LPQ (1981) have shown that for a special type of dependence the
A

estimator k, , (t) is consistent. We state their result, without proof,

as a corollai y.

Corol l 1.

Assume that the conditions of Theorem I hold. Then sl* 0 t

Sr (t) a. s. if and only if the following two conditions hold.

(ij 1 (a) /S (a - P (a) If (a-), a discontinuity point of ZF( , J)
where the sum is over J £ Ie

1I otherwise.

(iij P(min(T,isY')>t mina(Ti, is) =t)

- P(min (Ti, 1s I') > t I min (i, is 1) > t)

where 1' is the complement of I s I.

3. ExAMPms

In this section we present some representative examples of the use of

Theorem 1 in determining the effects, on estimating marginal survival, of

4
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the independence assumption for some bivariate exponential life distri-
butions. Let (TI, Ts) denote the time to failure from components I and 2,

respectively, in a series system. Let P (11, 4,) be the joint survival function
of (T1, To) and Si (t) = P (Ti > t), 1 -1 , 2 the marginal survival functions.

Let A (8) be the estimator (2.1) of S (t), and let (t), J =- (1), (2), (1, 2)

be given by (2.4). Then hi (t -0- V( (tj { {I, 2) (t) a. s. by Theorem 1,

if the functions F (t, I have no common discontinuities. Note that if

P(T - T,) = 0 then O(I, 2) (t) - 1 for all 1. We now give som.e

examples.

Exampe 1. (Block and Basu (1974))
Let P (ts, t1) = [A /(A1 + 4)] exp (- A, t, - A1 t2 - An max (t, it)]

[ [An / (A, + At] exp (- A max (ti, ts)),

for t,, t > 0,

Ap A>o, Al>0, A- +,+.

Here Si t) (A,+A,) exp (- (A + A,) 0) Al exp (- At),

t > 0, but
by theorem I

S, (t) -o exp (-(A, + Aq t), a. s. t >0, 1-----, 2.

Example 2. Gumbel (1960)
Let P (t,, tt) = exp (- A1 t - At t, - All ttq) t,, t > 0,

A , + A, > 0, At 0 0.

Here S (t) exp (- t), t> 0 but by Theorem I

, ()-I- exp (- It - st / 2), a. s. for t> 0, i. 1=, 2.

Example 3. Gumbel (1960)
Let P tI, 11) -exp (- A,t, - [It)( + An - A.(exp( A1 1)

+ exp (- t t,))] + An, exp (- A, t, - A t)]

fI, tt > 0, A,, A, > 0, All
Here S, (t) i exp (- t) but by Theorem I
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[I ( +All (1 - e-J t) (1 - 2d7(t) ezpdtS i t) I . l p ,( -A + A n ( I - e 7- A t ) ( - - .

where j is the compliment of t in (1, 2).

Exaiie 4. Marshall-Olkin (1967)

Let F(t, t) - ex (- r- A 4 -a, max (t, t))
t, ft, > 0. A, I s 00, A ,2 > O.

Hem Si (t) = exp ( h- ( j+ As t). In this case the conditions of Corollary

Sarn met so S(t) d - (t) a. L
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The Independence Assumption for a Series or Parallel System
when Component Lifetimes are Exponential

I

jlm P. lIii s-independence assumption on modeling system life in
The Ohio State University such a series system when the specific form of departure
Columbus from s-independence is that the joint distribution of (Xb

M. L. Moecbhmrpr X 2) is the bivariate exponential distribution of Marshall
* The Ohio State University and Olkin (8). This model postulates the possibility of

Columbus simultaneous failure of the two components due to a shock
simultaneously felt by both components or because one
component (say, a rocket booster) explodes and the other

Zsp Wwd0-.Imdd0W eo. sW 00, M d OWN W - component (say, a space shuttle) is destroyed by the explo-
agw,,ul. P in , Mvuvbb espemiw, MIoddbu nut , sion.
Medhq wd K M 3 1 e. Secondly, we consider a 2-out-of-2:F system. Such a

Rinw A system functions as long as one of the components func-
PUPM WiN d t of am Wt tions. We investigate in section 4 the effects of similar
Spedu Mgo simodel fM hf Md sh"Mi departures from the s-independence assumption on model-Upodul Mah malmi ,uelb: Stsaib" I
3tb ini to: s888 , "dum t om a ut , el m ing system life when the specific departures froms-independence follow either the Freund (6) bivariate ex-

AhmwS-A Mrm mpim mob i w~d t m b m 0I 1 ponential or that of Marshall & Olkin. The Freund model
f ro m a ped 3-m ki d compemm Im me himi-
dmu. Thb ui, @UW mipa te m pibe*is Wimwmeo - introduces s-dependence between X, and X 2 such that the
m.ww .INEW R,. 61 e a.N W M i*p -. failure of the first component changes the parameter of the
Wm dlmid. ahm f to We te 1mw i. onmam a- exponential life distribution of the second component

posti dbtlmd. of Mwomb & OaN WI or pw ld sm,) or from X2 to 02 and similarly if the second component would
eA of F (nWed 3Mm), fail first.

2. PROBLEM STATEMENT
1. INTRODUCTION

Notation

First, we shall consider a l-out-of-2:F system. Such a
* system functions if and only if both components function. X, lifetime of component i

Suppose that if the two components are tested separately, Ft) system Sf under s-independence
the respective times to failure are X, and X 2 . A common F'(t) system Sf under s-dependence
assumption made in life-testing is that these component ILI mean system life under s-independence
failure times follow exponential distributions 12, 3, 4, 5, 7]. 60 mean system life under s-dependence
Furthermore the assumption that X 1, X2 are s-independent tp. I point at which system reliability is p under
(the prefix s- implies "statistically") is often-times in- s-independence, ie, p = F, (t,, j)
yoked. In general, such an assumption is not testable due t,. D point at which system reliability is p under
to the identifiability dilemma [1], ie, if we observe T = s-dependence, ie, p = F0 (/,. v).
minimum {X 1, X 2) and I - X {XI 4 X2 1, where X () BVE bivariate exponentiality
denotes the indicator function, then Tsiatis (9) and others Other, standard notation is given in "Information for
have shown that the pair (T, 1) provides insufficient infor- Readers & Authors" at rear of each issue.
mation to determine the joint distribution of X 1, X1. That
is, there exists both an s-independent and s-dependent
model for (Xi, X 2) which produces the same joint distribu- 2.1 Model Assumptions
tion for (T, I). However, these equivalent s-independent
and s-dependent joint distributions may have quite dif- 1. Based on testing each component separately, an in-
ferent marginal distributions. Also due to this identifiabil- vestigator knows the marginal Sf (t) of the lifetime of i
ity problem there may be several s-dependent models with component to be exp(- ki).
different marginal structures which yield the same obser- 2. When the components are installed in a series
vable information, (T, 1). (1-out-of-2:F) or parallel (2-out-of-2:F) system, the joint

The first purpose of this study, as reported in section Sf{x,. x2) of component lifetimes may follow the
3, is to investigate the effects of departures from this Marshall-Olkin (8) model:

0018-9529/86/0800.0330501.00©1986 IEEE
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Pr{X, > X.X2 >X 2) . exp(-Xkgx - x2X2 - 1 2 and t, must besolved bynumerical techniques.
8. Under the assumption of Freund BVE in a 2-out-

max{X,,xd), for X,, X2 > 0, X12 ;0, x , x2 > 0. of-2:F system the system reliability is:

3. When the components are installed in a -- k= exp(-0t) + ,exp( - Ot)
2-out-of-2:F system the joint pdf(X, X) of component T) =
lifetimes may follow the Freund (6) model (>,+ X-) (X+ -9,)

Ju,, x2) = - (-492 - 9102 + CO) exp(-al + X2) )

>410exp{-9x8 - (4 + X2 - 0)x 1},if0 <xI <x2 (XI + X2 - 02) (XI + X2 - 01)

X281 exp{ - Ox, - (X4 + X2 - 0)X}, ifO <X2 <X 1 , and mean system life is:

for Xt, X2. 01, 92 > 0.

,D= 1\/020\1 + X2 - 02)] + \4/[81 (XI + X2 - 0,)]
4. Under the assumption of s-independence in a

l-out-of-2:F system the system reliability at a mission time - 0>19, - 9192 + OIX2)/[(>4 + X2) 0\1 + >\ - 02)
t is: "(Xi + X2 - 8)],if>i + ka * 02andX, + .2 * 01

Pr{min(Xi, X2 ) > t I "Independence") For the special instances when X, + X2 = 92 and/ or

= F't) = exp[- (XI + X2)t], X4 + X2 = 91, the pdf in model assumption 3 is slightly
simplified and the following different equations for system

mean system life = p = 1/(, + 42) reliability and mean system life must be used.

tp= -lnp/(>l + 4). If>X + X2 * 0, and X, + X2 = 9,:

5. Under the assumption of Marshall-Olkin BVE in a
I-out-of-2:F system the system reliability at a mission time FDt) - >4 t e -, + >4)1) + ep(-9,1)
Sis: (,I + X2 - 0)

Pr(min (Xi, X2) > I dBVE"} = FD(t) = exp(- X) M1{( + X2) 0\, - X02) - X202 } exp(-(OtC X2)t)

X M X1 + X2 + X12, (1+X,2)(at + >2 - 02)

mean system life = AD = l/,
t,. D = -Inp/X. AD = X2/(X + X2)' + 1/102 01X + X2 - 02))

6. Under the assumption of s-independence in a 2-out- + (XI + X2) 0\2 - >410) - >202

of-2:F system the system reliability at a mission time t is: 0\1 + X2)2 (XI + X2 - 9,)

Pr{max (XI, X2) > t I "Independence"I If X + X2 = 02, and X, + X2 * 0:

-. Ft) = exp(-Xt) + exp(- X2t)- enp(-(Xt + >.)t),
F'O) = Xt t eXP( - ( t + X2)t) + exp( - 8t)

mean system life is A, = l/X, + IAz -/(X, + X3) ) 1 + X2- 01)
= (Xt(+ + >4-- 9,)

2
0\l + X>) - X4 + {CXA + X2) (t - X01) - X101) exp(-CA - )0

X1\20\, + 1\) (At + X) Ot + X 2 - 9,)

and t, must be solved by numerical techniques.
7. Under the assumption of Marshall-Olkin BVE in a 1o = Xl/CA, + X\) + 1/101 (A1 + X2 - 01)

2-out-of-2:F system the system reliability is:

Pr{max (X,, X2) > t I "BVE") =- FD(t) + C1 + X2) Olt - X201) - 9,1
Oki + X) 2 (Xt + X2 - 01)

= exp(-(A + X12)t) + exp(-(A, + X12)t) -exp(->t),

mean system life is: IfXI + X= 01 = 02:

CA F + X12) _DO) + 0\1 + X>)tI exp(-AI + \4)t),

(X + x 1) CX + Xx1) X AD = 2/(X + X2).
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As before, tv most be evaluated by numerical techniques. The relative error in modeling mean system life is:
The problem to be addressed is: How far off may a

researcher be in modeling system reliabiity, man system AD~ - P4
* life, and mission time at which system reliability is p for

sime system (Maruhali-Olkin BME and for parallel
syutem (Marshall-Olkin BVE or Freund BME. =-p(k 4+ 2k3 + k 2 _+ 2c+ 1) +p(k +4+k)-k 2J

(k 2 +k+l) (1+ kp)(k +p)

3. MODELING EFFECTS OF DEPARTURES FROM k = )hi/X)2.

i-INDEPENDENCE IN SERIES SYSTEMS

From model assumptions 4 and 5, the relative error *nAgain s-independence consistently overestimates mean
modeingsystm rliablit uner Mrshll-OldnBVEis system life; the magnitude of this error is plotted in figure 1.

Fp(t) - Fr(t) . exp(-)t - exp(-(Xi + )00)t

F,(t) exp(-(X 1 + WO)t

- exp( - X10 -1 I

-' P X +1Y

p = X, 2/>, is the correlation between X, and X2.
c

This shows explicitly that the relative error ranges from 0 Zg
(when p = 0) to - cc (when p - +1). Thus assuming -4
s-independence consistently overestimates system reliability
and in some instances the results may be very far off. Whlen (X
mission timeis t, - -In P/ (Xi + W2 )the relative error is c9.

eip(P(. In P) - I o 1' - 1.From model assump- all

tions 4 and 5, the error in modeling mean system life is:
U0 - Aq1-X +X) 1

ofj ]/().I + X2)A

Agains-independence consistently overestimates the mean C.00o 0. 17 0.33 C'.5so C.67 0.83 .00

system life. CRE--_ '1

Fig. I. Relative Error in Modeling Mean System Life Under

4. MODELING EFFECTS OF DEPARTURES FROM Marshali-Olkin BVE for X, = k X2
INDEPENDENCE IN PARALLEL SYSTEMS

4.2 Under Freund EVE.

4.1 Under Marshall-Olkin BYE. From model assumptions 6 and 8 the relative errors of

From model assumptions 6 and 7, the relative error is: mean system fife and system reliability are:

Fo(t) - F1 (t) = eXp(-X 1 2 1) -I - "and FD)- F,

AmIst FQl)

Px{ (k + X) -1though not simple expressions, they may be easily calculated.
1 p Figure 2 shows plots of the relative error of mean system life

for some represenutve values of A, and 8j. viz, X, = 1, 1\2 =
which interestingly enough is the same relative errxor obtained 0.S, 1.0, 2.0; 0.25 4 91 <(4.0 (on horizontal axis); and 02 =
in section 3 and the same comments apply here. 0.25, 0.5, 1.0, 2.0, 4.0. Figure 3 shows plots
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of the relative error of system reliability for t., =
* -In (.90)/(Xt + X2) for the same values of ), and 9,. For :

the case of s-independence, Xt = 9t = l and X2 = 9= =
0.5, 1, 2, the relative error is, of course, zero in the plots.

For situations in which failure of the first component REFERENCES

causes the hazard rate 02 of the second component to be in-
creased (or decreased), s-independence overestimates (or III A.P. Basu, I.P. Klein, "Some recent results in competing risks",

underestimates) mean system life and system reliability. Survival Analysis, Crowley and Johnson eds., IMS, 1982, 210-229.

This overestimate (or underestimate) becomes substantial [21 T.J. Boardman, P.J. Kendell, "Estimation in compound exponen-
tial failure models", Technometrics, vol. 12, 1970, pp. 891-900.creased) over the hazard rate X2 of the second component [31 A. Chao, "Approximate mean squared errors of estimators of
reliability for k-out-of-m systems in the independent exponential

tested separately. A similar comment can be made for 91 case", J. Amer. Statist. Assoc., vol. 76, 1981, pp. 720-724.

and X1. Positive (or negative correlation) of the component [41 H.A. David, M.L. Moeschberger, The Theor, of Competing Risks.
lifetimes is a consequence of the hazard rate 0, being Macmillan Publishing Co., 1978.
greater (or less) than the hazard rate X, of component i [51 B. Epstein, M. Sobel, "Some theorems relevant to life testing from
tested separately. The magnitude of the relative error of an exponential distribution". Ann. Math Statist, vol. 25, 1954, pp.
mean system life and system reliability may easily be found 373-381.
in the figures 2 & 3, respectively. [61 J.E. Freund, "A bivariate extension of the exponential

distribution". J. Amer. Statist. Assoc., vol. 56, 1961, pp. 971-977.
[71 N.R. Mann, "Simplified expressions for obtaining approximately
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Communications in Statistics
Part A: Theory and Methods

Part B: Siwulatlon and Computation
Part C: Stochastic Models

Communications In Statistics is a multi-part journal.

Part A: Theory and Methods focuses primarily on papers describing new ap-
plications of known statistical methods to actual problems in industry and gov-
ernment and on articles with a strong mathematical orientation that are sig-
nificant to statistical studies. In addition, Pat A also offers communications
that discuss practical problems with either only ad hoc solutions or none at
all; in cases where there is a difference of opinion on particular techniques, all
parties involved vigorously debate the issue with thought provoking com-
mentaries.

Part R: Simulation and Computation deals specifically with problems at
the interface of statistics and computer science, including tables of, and algo-
rithms for, statistical functions and numerical solutions to outstanding prob-
lems, whether by simulation or the use of special functions. Papers are gener-
ally application oriented, although when practical utility is demonstrated, the
journal presents theoretical papers on appropriate topics.

Part C: Stochastic Models (Afiffi ated Publication of the Operations Re-
seach Society of America) (ORSA) offers an interdisciplinary presentation
on the uses of probability theory with contributions on mathematical metho-
dology ranging from structural, analytic, and algorithmic to experimental
approaches. This publication discusses the practical applications of stocha-
stic models to such diverse areas as biology, computer science,telecommuni-
cation, modeling, inventories and dams, reliability, storage, quewing theory,
and operations research.

All three journals stress practicality and innovation, and their direct repro-
duction format ensures truly rapid communication of the very newest ideas,
problems and solutions in all areas of the field, keeping readers at the fore-
front of statistical inquiry.
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INDEPENDENT OR DEPENDENT COMPETING RISKS:
DOES IT MAKE A DIFFERENCE?

John P. Klein K.L. Moeschberger

Department of Statistics Department of Preventive Medicine

The Ohio State University The Ohio State University

Columbus, Ohio 43210 Columbus, Ohio 43210

Keyi fdoxil~s andft uhne,: com~petinig &"A componen~t f-ie; modeJting
Av6eh~e Ag~tem6; tobuatn6& di4*; a6tem teWabAiAity;
Gumbet biwuate exponentia; Vokinton bivaAiate exporetSt;
Oak bivaxtia ezxpone.ntia.

ABSTRACT

This article investigates the consequences of departures from

3 Independence when the component lifetimes in a series system are

exponentially distributed. Such departures are studied when the

joint distribution is assumed to follow either one of the three

Gumbel bivariate exponential models, the Downton bivariae

exponential model, or the Oakes bivariate exponential model. Two

3 distinct situations are considered. First, in theoretical

modeling of series systems, when the distribution of the

component lifetimes is assumed, one wishes to compute system

reliability and mean system life. Second, errors in parametric

and nonparametric estimation of component reliability and

component mean life are studied based on life-test data collected

on series systems when the assumption of independence is made

507
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erroneously. In both instances, one may be appreciably misled by

falsely assuming independent component lifetimes. The amount of

error incurred depends upon the correlation between lifetimes and

the relative mean life of the two components. In the modeling

problem, the level of -eliability and the length of mean system

life also affects the error. In the estimation problem sample

size may be influential in determining the magnitude of the

error.

INTRODUCTION

Consider a system consisting of two components linked in

series. For such a system the failure of either of the

components causes the system to fail. In a biological or medical

context the components can be different lethal diseases and/or

different reasons for removal from a study. In a clinical trials

framework the primary response of interest, death or remission,

and censoring can be considered as components of the system.

This general formulation has been detailed in the theory of

competing risks (cf. David and Moeschberger (1978)).

A common assumption in such a formulation is that the

component lifetimes are statistically independent. Several

authors have shown that based on data from series systems only,

this assumption, by itself, is not testable because there is no

way to distinguish between independent or dependent component

lifetimes (see Basu (1981), Basu and Klein (1982), Miller (1977),

Peterson (1976), etc.). However, several authors (see Lagakos

(1979) p. 152 and Easterling (1980) p. 131) have pointed out the

need to determine, quantitatively, how far off one might be if an

analysis is based on an incorrect assumption of independence.

To study the effects of erroneously assuming independence we

shall assume that each of two component lifetimes is
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exponentially distributed when tested separately and that the

3property of marginal exponentiality will be preserved even though

some dependence may be induced when the components are linked in

series. The assumption of exponentially distributed component

lifetimes has been made by Mann and Grubbs (1974) when finding

confidence bounds on system reliability, Boardman and Kendell

(1970) when estimating component lifetimes from system data, and

Hiyamura (1982) when combining component and system data. (See

Barlow and Proschan (1975) or Mann, Schafer, and Singpurwalla

(1974) for a more complete review.) We shall model the

dependence structure by the three models of Gumbel (1960), a

model proposed by Downton (1970), and a model described by Oakes

(1982). These models are briefly described in Section 1. The

effects of a departure from the assumption of independent

component lifetimes will be addressed for two distinct

situations.

The first situation arises in modeling the performance of a

theoretical series system constructed from two components. Here,

based on testing each component separately or on engineering

design principles, it is reasonable to assume that the component

lifetimes are exponektially distributed with known parameter

values. Based on this information, we wish to predict parameters

such as the mean life or reliability of a series system

constructed from these components. In Section 2 we describe how

these quantities are affected by departures from independence.

The second situation involves making inferences about

component lifetime distributions from data collected on series

systems. Commonly, data collected on such systems are analyzed

by assuming a constant-sum model, of which independence is a

special case (compare Willicas and Lagakos (1977) and Lagakos and

Williams (1978)). In Section 3.1 we study the properties of the

maximum likelihood estimators of the component mean life

calculated under an erroneous assumption of independent

exponential component lifetimes as mentioned above. Because of

the widespread use of the nonparametric estimator for component

J
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reliability proposed by Kaplan-Meier (1958) we study, in Section
3.2, the properties of this estimator when the marginal

reliabilities are exponential and independence is incorrectly

assumed.

1. The Models

Consider a two component series system with component life

lengths X1 , X. Suppose that each X has an exponential

survival function

Fi(x) - P(Xi > x) - exp(- Xi X), Xi > O, x > O. (1.1)
This assumption is made on the basis of extensive testing of each

component separately or on knowledge of the underlying mechanism

of failure.

To examine the effects of a departure from independence we

consider five bivariate exponential models, each with marginals

equivalent to (1.1). The first three models are due to Gumbel

(1960); the last two models are due to Downton (1970) and Oakes

(1982).

1.1 Gumbel's Modl

For this model the joint survival function is

P(Xi > x 1 , X2 > x 2 ) - exp(- IX1 x 1 - X2x2 - X12XlX2),

x 1 , x 2 > 0' X1 , X2 > 0, 0 _ X 12 <- X1 X 2

(1.2)

The correlation between X1, X2 is

1l2
I P - - X 2 exp( X1 X2/ X12 ) Ei(- XI X2/ X12 ) "i

where Ei(z) - f_, exn(-ul du is the integrated logarithm.
u

For this model p varies from - .40365 to 0 as A 1 2 decreases

from X1 X2 to 0. It is never positive. The regression X1

on X2 is nonlinear with

1 2
E(XilX2 - x2) " Xl X2 + X2 '12x2 - X12)/( 'l + 12x2 )2
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1.2Gubel's Model

For this model the joint survival function is

P(X1 > x1 , X2 > x2 ) -

exp(- Xxl - X2x2) (1 + 40 (1-exp(- Xlxl)) (1- exp(- X2x2))),

Xl' X2 > 0, Xl, x 2 k 0, - 1/4 S 0 S 1/4. (1.3)

The correlation, p , may be positive or negative. The regression

of XI on X2 is again nonlinear with

E(XlIX 2 - x2) - (1 + 2p - 4p exp(- X2x2 ))/ Xl.

The effects of a departure from independence on modeling system

reliability and estimating component reliabilities has been

studied in detail in Moeschberger and Klein (1984) for this

model.

1.3 Gumbel's Model

For this model the joint survival function is

P(X1 > xl, X2 > x2 ) - exp (-(( Xlxl)m + ( X2x2 )m) I/a)

Xl' X2 > 0, m k i, xI, x2 k 0. (1.4)

The correlation is

P - (4 +2m) Lcos 2+2/m d 0 -1

(cos e m + sin e)

which varies from 0 to 1. For this model m - 1 corresponds to

independence and as m - -

P(XI > xl, X2 > x2) * minimum (exp(- Xixt), exp(- X2x2 )),

(1.5)

the Frechet (1958) upper bound for these marginals.

1.4 Downton's Model

Downton (1970) suggests modeling bivariate exponential

I- systems by a successive damage model. This model assumes that in

a two component system the times between successive shocks on

each component have independent exponential distributions and

that the number of shocks required to cause each component to

fail follows a bivariate geometric distribution. The joint

probability density function of the component lifetimes is
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f)Lxx2)2(2 7 :1x2).

(1.6)

where 1o(. ) is the modified Bessel function of the first kind of

order zero, and , X2 > 0, xl , x2 k 0, 0 < 0 < 1.

The correlation between X1 , X2 is p which spans the interval

(0,1). As P -11 the Joint survival function of Xl , X2

approaches the upper Frqfchet distribution (1.5). For this model

K(XllX 2 - x2) - (1- P)/ + 0P 2 x2/ X'l"

1.5 Oae'Ld

Oakes (1982) has proposed a model for bivariate survival

data. This model was first proposed by Clayton (1978) to model

association in bivariate lifetables. Special cases of Oakes'

general model have been suggested by Lindley and Singpurwalla

(1985) and Hutchinson (1981).

For this model the joint survival probability is

P(X1 > x1, X2 > 42) -

(exp( )1( 8-1)xl) + exp(X 2(e -l)x2 )-l]
"I/(e -1)

where AI,' 12 > 0, e > 1, xI , x2 > 0. (1.7)

For 8 - 1, Xl , X2 are independent and P(Xl > xl, X2 > x2) 4

bound in (1.5) as 8 - . For this model Kendall's coefficient of

concordance is T - (e'-l)/(8+1) which spans the range 0 to 1. The

correlation, P , also spans the range 0 to I and is found numerically.

This model has the following physical interpretation. Let

r(x1 IX2 - x2) and r(xlIX 2 > x2 ) be the conditional failure

rates of X1 given X2 - x2 and X2 > x2, respectively. Then

r(xljX 2 - x2 ) - er(x 11X2 > x2 )'

The model can also be derived from a random effects model. This

formulacion assumes that when the components are tested separately unde

ideal conditions the component survival functions are

Si(x) - exp(-exp(N ix( 8-I)) + 1), i - 1, 2,

and that when the two components are put in a series system in

the operating environment there is a random factor W which
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simultaneously changes each component life distribution to

SW (x). If W has a gaame distribution with density functionU 
I 1

g(v) a V 0-1 e'v then, unconditionally, the Joint survival

function (1.7) holds.

1.6 Frichat Bounds

Frichet (1958) obtained bounds of the Joint survival

*functions which can be obtained for any set of marginal

distributions. For exponential marginals these are

M(AXIMUM (e -Al 1 + X2x2 1, 0) < P(X1 > X1 , X2 > x2 )

-Xll e),2 x2:5MINIMN (e I

For this set of marginals the lower Frichet distribution has

correlation - .694 and the upper Frichet distribution has

correlation 1.0. These are the minimal and maximal correlations

for exponential marginals.

2. Errors in Modeling System Life

Suppose that based on extensive testing or based on

theoretical considerations each of the two components in a series

Ssystem is known to have an exponential distribution, (1.1) with

marginal means l/ XI, 1/ X 2, respectively. It is of interest

to predict the system reliability F(x) - P(X1 > x,X2 > x) and the

system mean life U -I F(t) dt. If the investigator assumes
0

that the two components are independent then the system

* reliability is

F1 (X) - exp(-(k 1 + 1 2 )x) (2.1)

and system mean life is " I - i/(X 1 + X 2)

If the components are not independent, but in fact follow one

of the models in Section 1, then convenient measures of the

effects of incorrectly assuming independence are

A(X) - (I(x) - F,(X)/FI(x) and 5 - U - PI ) / 
-I,

for predicting system reliability and system mean life,
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respectively. In these, F(x) and P are computed under the

appropriate dependent model. Values of F(x) can be computed

directly for (1.2), (1.3), (1.4), (1.6) (by numerical

integration) or from (1.7). Expressions for U are given in

Appendix 1. All expressions for A(x) and 6 depend on the

values of X1 and A 2 only through the ratio A 1 / A 2 - K

and, for K < 1, the values are equivalent to those for K' -

For the upper Frichet distribution

A lip) - p"1 1-1 where K >: 1

and xp is the upper pKrcentile of FI~x), i.e., - p,

Also 8 - I/K for K > 1. For the lower Frichet distribution

S(xp) _ p" Al + + p"-pl-l if p + J IT - > 0
- 1 otherwise

and 6 -K 2 + K + 1 - (K+l)2 Y + (K+l) ln(Y)

K K

where Y is the solution of the equality XK + X - 1. Table I

gives the values of A(xp) x 100 and 6 x 100 for p - .9, .7,

.5, .3, .1 for the upper and lower Frchet distributions.

From Table I we see that the largest percent error occurs

when the A parameters are equal (K-I). Also for fixed K there

is relatively small error (smaller than 5.41%) in estimating

system reliability by modeling a dependent system by an

independent system when F(x) is large (say, F(x) > .9). For

small values of system reliability, one can be appreciably

misled. Errors in estimating system mean life appear to be

substantial unless one component has considerably longer marginal

life than the second one. In that instance, one can see

instinctively that the correlation would have a minimal impact.

Figures IA, 1B and 2A, 2B are plots of a (xp) for p - .25,

.75 and for K - A 1 /A 2 - 1, .67, respectively, for the five

models described in Section 1 as a function of correlation. It

appears that substantial errors may be made in modeling system

reliability with moderate amounts of dependence.



... • 1..J11111 I

INDEPENDENT OR DEPENDENT COMPETING RISKS 515

1POPW AND LO 3oMs aN IME P r MIOR IN WMING %STm LIFE

iF(x).9 (x-0.7 i(x-0.5 Pxe.3 F(x1:O.1 W .I

WIER UPPER LW UPMl LMO UPPER EM UPPER OM UPPER LO WPER
K OMR 9MLN M BMWN MUMJ BOMW DKrM MW MWJ MW 8aure sow

1 -0.23 5.41 -3.81 19.38 -17.18 41,42 -100.0 82.57 100.00 216.23 -38.81 300,00
2 -0.2n 3.57 -3.39 12.02 -15.27 25,99 -190.00 49.36 -100.00 115.44 -37.07 50.00

3 -0.22 2.87 -2.8 9.33 -12.90 18.92 -51.52 35.12 -100. 77.83 -34.85 33.33
4 -0.19 2.13 -2.44 7.39 -11.3 14,1 -44.11 27.23 -100.00 56.49 -32.83 25. 0
5 -0.16 1.77 -2.12 6.12 -. 7 12.25 -30.38 22.22 -100.00 46.78 -31.06 3.00
6 -0.14 1.52 -1.87 5.23 -8.45 10.41 -33.91 18.77 -100.00 38.95 -20.53 16.67
7 -0.13 1.33 -1.67 4.5 -7.55 9.05 -30.3 16.34 -100.00 33.35 -2. 18 14.29
8 -0.12 1.18 -1.51 4.04 -6.82 8.00 -7.42 14.31 -100.00 29.15 -2 .99 12.50

9 -0.11 1.08 -1.37 3.83 -4.22 7.18 -25.02 12.79 -100.00 25.09 -25.938 11.11
10 -0.10 0.8 -1.38 3.30 -5.71 6.50 -22.91 11.57 -100.00 23.28 -24.98 10
11 -0.09 0.8 -1.17 3.02 -5.28 5.95 -21.27 10.55 -100.00 21.15 -34.12 9.00
12 -0.08 0.81 -1.08 2.78 -4.91 5.48 -19.78 9.70 -100.00 19.38 -23.34 833
13 -0.08 0.76 -1.01 2.56 -4.59 5.08 -18.0 8.98 -100.00 17.88 -22.62 7.69
14 -0.(N 0.70 -0.95 2.43 -4.30 4.73 -17.35 6.38 -10.00 16.59 -21.96 7.14
15 -0.07 0.06 -0.90 2.25 4.08 4.43 -16.35 7.82 -100.00 15.48 -21.35 6.67

16 -0.00 0.82 -0.85 2.12 -3.81 4.16 -15.45 7.34 -100.00 14.50 -31.78 6.25
17 -0.06 0.38 -0.80 2.00 -3.83 3.98 -14.85 6.92 -100.00 13.05 -31.35 3.81

18 -0.06 0.96 -0.78 1.89 -3.45 3.72 13.98 6.54 -100.00 12.K -19.76 5.56
19 -0.06 0.8 -0.73 1.80 -3.M 3.53 -13.27 6.31 -100.00 12.31 -19.30 5.26
2D -0.06 0.8 -0.69 1.T1 -3.14 3.38 -12.17 5.90 -M.28 11.89 -1817 5.00
21 -0.05 0.46 -0.0K 1.8 -3.00 3.2 -12.13 5.8 -69.34 11.03 -18.46 4.76
2 -0.05 0.46 -0.64 1.86 -2.83 3.06 -11.8 5.37 -84.73 1053 -18-08 4.55
23 -0.06 0.44 -0.61 1.50 -2.78 2.93 -11.16 5.14 -81.41 10.07 17.71 4.35
24 -0.04 0.42 -0.59 1.44 -2.68 2.81 -10.74 4.98 -78.34 9.65 -17.37 4.17

25 -0.04 0.41 -0.57 1.38 -2.58 2.70 -10.34 4.74 -75,49 9.28 -17.04 4.00

Figures 3A, 3B are plots of 5 for all five models and for

K-X l/X 2 - 1, .67. respectively, as a function of the

correlation. Here it appears that substantial errors are made in

modeling mean system life for even a small amount of dependence.

3. Errors in Estimatina Component Parameters

3.1 Parametric Estimation

In this section we examine the effects of incorrectly

assuming independent component lifetimes on the magnitude of the

estimation error in estimating the first component mean life

based on data from series systems. Suppose that n series systems
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are put on test. For each system we observe the system failure

time and which component caused the failure. Let ni denote the

number of systems where the system failure was caused by failure

of the ith component, i - 1, 2, and let T be the total time on

test for all n systems. If we assume that the component

lifetimes are independent and exponentially distributed then

Hoeschberger and David (1971) show that the maximum likelihood

V |.estimator of u 1 , the first component mean life is

l - T/n1 for n, > 0. (3.1)

This estimator is asymptotically unbiased and for n finite

E (k) - E(T) E(l/nlnl > 0) due to the independence of T and n1 .

Suppose now that the two component lifetimes are not

independent but follow one of the models described in Section 1.

If we incorrectly assume independence then a measure of the
excess bias due to incorrectly assuming independence is B -

(E( IDependence) - E(jilIndependence))/ u1. For each of'the

dependent models under consideration T and n1 are independent.

For large n, B converges to (ii /p -p 1)/ ;A1 where j is the

mean system life and p is the probability the first component

fails first, computed under the dependent model. For finite n,

E ( 4) - n u Ep(l/nlIn1 > 0) computed under the

appropriate model,where n

E (l/nlInl > 0) - E ( 1)Pk(1p)k/k / (1 -(1 -p)n).
k-i

Expressions for u and p are given in Appendix 1 and Appendix 2,

respectively. The expressions depend on X1' X2 only

through the ratio K - X l/ X. For all models, p - 1/2 when

SK- 1.

For the upper Frichet distribution p - 0 if K < 1; 1/2 if K -

1; and 1 if K > 1. Hence for K < 1 no failures from the first

component are ever observed so that the modeling error B becomes

infinite for all n. For K > 1, p - I and P - U i so that B -

(1 - E( U lllndependence)/ U1) which tends to 0 as n - . In

this case the models with 'correlation ranging from 0 to I have B

increasing for p < pO and decreasing for p > P0. For the
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lower Frichet distribution, p is the value of X which solves the

equation XK + X - I - 0. For K < 1 we have p < 1/2 and for K >

I we have p > 1/2. Table II gives the value of B for n - 25,

50, - for the two Frichet distributions. It also gives the

maximum modeling error for the Gumbel C model which is an
indication of maximal excess modeling error.

From Table II we note that the dependence structure exerts a

large effect on estimating the smaller of the two component means

and that either effect is most exaggerated for small sample

sizes. For K a 1 there is very little sample size effect on the

modeling error. For K strictly larger than one the maximum bias

under the Gumbel C model decreases with K and the correlation at

which this maximum is attained also decreases to 0.

Figures 4A, 4B are plots of the relative excess bias, B, due

to incorrectly assuming independence, as n - - for K - 1.5, and

.67, respectively. Figures 5A, 5B are plots.of B for n - 10 with

K - 1.5, and .67, respectively. For K - 1.5 the sample size

effect is negligible in assessing the relative excess bias. For

K - .67 the sample size has a noticeable effect on determining B.

3.2 Nonnaraetric Estimation

A second approach to the problem of estimating component

parameters is via the nonparaetric estimator of Kaplan and Meier

(1958). Investigators who routinely use nonparametric techniques

may take this approach in hopes of obtaining estimators that are

robust with respect to the assumption of exponentiality. However

this estimator is not necessarily robust to the assumption of

independence.

The product limit estimator, assuming independent risks is

constructed as follows. Suppose that n systems are put on test

and let ril ... , rini be the ranks of the ordered n i

failures from cause i, xi (1) ..... Xi(n ), among all n
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TAKE 11
FMATI NMDE MW IN 87flM IM WAN141

i '. 0 0 UMIT (H -

lam ciM C Lam 0JLM C Lam (fM C
K MW D1 1M B1S BMK) MD1 IM BIS U M) O.1 3(1 BLS

1/10 -17.4 1 000 - -M.09 1.000 -56.84 1000
1/ 9 -142.98 1.000 -7. 35 1.000 -W. 84 1.000
1/ S -123.37 1OW O -76.68 1 O -58. 9 L 00
1/ 7 -17. 1 000 -9.03 1.000 -M.87 1.000
1/ 6 -8.68 1.000 -0.34 O W.0 -54,6 1 .000
1/5 -61.91 1.0 -61.54 1.000 -56.13 1.000
1/ 4 -71.45 1 -T. 57.B0 I.0 -51.24 1.OO
1/ 3 41.78 1.000 -53.00 OW.0 -48.73 1O
1/ 2 -52.16 1. 0 -47.31 1.0 -48.00 1.0W 0

I -40.90 105.98 1.00 105.98 -38.45 1M.13 1.00 102.13 -38.63 100.00 1.000 100.00
2 -32.8 -2.7 0.510 10.82 -32.84 -1.04 0.518 11.50 -32.12 0,00 0.528 11.91
3 -28.28 -1.82 0.400 5.33 -28.38 -0.-6 0.410 5.84 -28.38 0.00 0.424 6.15
4 -25.83 -1.35 0.348 3.38 -25.6 -0.52 0.32 3.76 -25.83 0.00 0.373 4.01
5 -23.62 -1.08 0.312 2.39 -23,80 -0.41 0.33D 2.71 -23,90 0.00 0.341 2.91
6 -22.05 -0.88 0.2M 1.82 -2.25 -0.34 0. 37 2.09 -22.35 0.00 0.319 2. X
7 -JO.77 -0.78 0.271 1.46 -20.98 -0.2 0.290 168 -2111 0.00 0.303 1.83
8 -19.88 -0.67 0.257 1.20 -19.92 -0.28 0.277 1.40 -20.06 0.00 0.289 1.53
9 -16.78 -0.59 0.246 1.01 -19.00 -0.23 026 1.19 -19.13 0.00 0.279 1.31

10 -17.98 -0.53 0.237 0.87 -18.2 -0.20 0.237 1.0 -18.33 0.0 0.2'71 1.14

order lifetimes. The estimator of the component reliability for
the ith component is

(1 if x < Xi(l)

J(ix) n rij
Si(x) -IT x >" Xl))

J-( n rij + 1) (3.2.1)

where J(i,x) is the largest value of j for which xi(j) < x.

This estimator is asymptotically unbiased when the component

lifetimes are independent.

When the risks are dependent Klein and Moeschberger (1984)

show that Si(x) does not estimate the marginal component

reliability, but rather it estimates consistently another

survival function

ii(x) - exp(- I dQi(t)) (3.2.2)
0 rt

where F(x) - P(minimum (X1 ,X2 ) > x) and Qi(x)

- P (min(X1 ,X2 ) :_ x, min(Xi,X 2 ) - Xi), i - 1, 2.
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TAE II
A66WIIfC BAS OF IN POUCT LIMIT 06RIPMli

e~~x)-o.7 (z)-o.5 (-,s

LOW GOWt C MG M tlI. C Lim (11B C
K M , ) MNI NIM BIM BIN W)1 RHO BIAS ROND MI0-1 NI) BIXS

1/9 -100.00 42.6 1.00 42.66 -100.00 100.00 1.000 100.00 -100.00 2B.33 1.000 233.33

1/ 8 -100.00 42.86 1.0 42.66 -100.00 100.0 1.000 100.00 -100.00 233.33 1.000 233.33

1/ 7 -100.00 42.6 1.000 42.65 -100.00 10000 1,00 ( 100.00 -100.00 233.33 1.000 2M. 33
1/ 6 -100.00 42.86 1.000 42.86 -100.00 100.00 1000 100.00 -100.00 233.33 1.000 233.33
1/ 5 -100.00 42.6 1.000 42,865 -100.00 100.00 1,000 100.00 -100.00 233.33 1.000 233.33

1/ 4 -100.00 42.85 1.000 42.6 -100.00 100.00 1. 100.00 -100.00 2M.33 1.000 233.33
1/ 3 -100.OD 42.80 1.O 42.85 -100.00 100.00 .OW 100.00 -52.70 233.33 1.000 233.3
1/ 2 -100.00 42.85 1.000 42.65 -100.00 100.00 1.000 100.00 -24.21 233.33 1.000 233.33

1 -100.00 19.52 1.000 19.52 -100.00 41.42 1.000 41.42 -9.65 82.57 1.000 82.57
2 -100.00 0.00 0.53 3.87 -24.67 0.00 0.528 7.65 -4.40 0.00 0.58 13.07
3 -100,00 0.00 0.424 2.09 -14.6 0.00 0.424 4.10 -2.85 0.00 0.424 7.22
4 - .06 0.00 0.373 1.38 -10.78 0.00 0.373 2.70 -2.11 0.00 0.373 4.74
5 -1.V7 0.00 0.341 1.01 -6.42 0.00 0.341 1.98 -44.S0 0.00 0.341 3.47
6 '-1.39 0.00 0.319 0.79 -6.91 0.00 0.319 1.54 -34.83 0.00 0.319 2.70
7 -1.18 0.00 0.303 0.64 -5.86 0.00 0.300 1.28 -28.71 0.00 0.303 2.19
8 -1.03 0.00 0.20 0.54 -.0o 0.00 0.290 1.05 -2445 0.00 .290 1.63
9 -0.92 0.00 0.27 0.4 -4.50 0.000 .M 0.90 -21.31 0.00 0.279 1.57

10 -0.82 0.00 0.271 0.40 -4.03 0.00 0.271 0.78 -18.8 0.00 0.271 1.37

Expressions for Hi(x) for the five models of interest are given

in Appendix 3.

A measure of the effect of dependence in using the product

limit estimator with dependent risks is Al(p) = (Hi(x,) -

p)/p where xp is the time where the true component reliability

is p. A l(p) is again only a function of K - 1/X 2. For

the upper Fr rchet distribution

p-1 -1 for K < 1

A 1 (p) = p-1/2 _i for K - I

0 for K > 1

for K < 1 14(x) - 1 for all x since the first component never

fails, while for K > 1 all failures are due to the first

component. For-those models with correlation spanning the range

(0, 1), Al(p) is increasing for correlations less than p and

decreasing for correlations greater than p when K > I. For the

lower Frdchet distribution
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I, {-xp k -j) du for p (1-Y)

0otherwise,I

where Y is the solution to the equation XK + X - 1. Table III

shows the value of A,(p) x 1000 for p - .7, .5, .3 for the two

Frichet distributions. For K > 1, the maximum value under the

Gumbel C model is also given. As in the parametric estimation

problem the largest errors are incurred when K < 1. In all cases

the effect of a departure from independence is the largest when p

is small (i.e. for large x). The effect decreases as K increases

reflecting the fact that when K X1 > > X2 the majority of

the system failures are due to the failure of the first component.

Figures 6A, 6B for p - .25 and 7A, 7B for p - .5 are plots of

l(p) for the five models and K - 1.5, .67,

respectively. As in the previous figures one can see that for

even a small departure from independence the relative effect of

dependence can be quite large.

4.Cocuin

The results presented in this paper show that for all five

bivariate exponential models one may be appreciably misled by

falsely assuming independence of component lifetimes in a series

system. The amount of error incurred in modeling system

reliability not only depends upon the correlation between

component lifetimes but also on the level of system reliability.

The error in modeling mean system life similarly depends upon the

correlation and the length of mean system life. Both quantities

depend on the relative magnitudes of the parameters.

For the dual problem of estimating component reliability

based on data from a series system, it appears that departures

from independence are of greater consequence. Both parametric

and nonparametric estimators of relevant component parameters are

inconsistent, Bias increases dramatically as the correlation

gets further from zero.
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APPENDIX I

U Formulas for expected system life.

Gumbel A: exp (A1 .A 2 ) )2J*~ 1  A 2

4A1  2 J 12  (A1.1)

where i(.) is the survival function of a standard normal random
* variable.

1 6 pA 1 1 2

Guabel 8: 1 +
(A1+A 2 ) (A11+A2 )(2A,1+A2 )(A1 +2A2 ) (A1.2)

Guabel C: (1 - 1 / .  (Al.3)Gumbel)

Downton : (21+A2 )(1-P)

M(1+A 2 - 4p A1 A2 ) (A1.4)

- (l1+A2 J2 - 4p 1 12  1 A2 -2p A

2A1A2 ((A1 +A2 )
2 

- 4p A11 2 )

Oakes : found by numerical integration

3 IAPPENDIX 2

Formulas for p - P(XI < X2

Gumbel A - P(X1 < X2)

=1/2 + (A 11) n exp -- . _ 12>0
1 2

12 \ 4A~ 12 2A121"

where I(.) is the survival function of a standard normal
random variable. (A2.1)

Gumbel B - P(X1 < X2)

A1 4P A2 "(A1 -A2 )

(YA 2 )  (A1  2 )(A+ 2 2 )(22 1 + A2 ) (A2.2)

S
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Gumbel C - P(X < X2)

• 
11

C A~*A)(A2 .3)

Downton - P(X1 < X2

A 2 1 A2(1-p)

4((2 1+22 )2 - 4p A1 A2)(A1-A2) + F 2)2 4pAIA2

(A2.4)

Oakes - P(X1 < X2 ) found numerically.

APPENDIX 3

Gumbel A,- HI(x) exp(-A 1X - A12x
2 ) (A3.1)

Gunbel B - W1(x = exp{ x (1 4 4P(l-exp(-A 2t))(1-2exp(-A it))) \
0 (1 + 4p(1-exp(-A 2 t))(1-exp(-Ait)))

(A3 .2)

G u m b e l C - WI Cx -*e ( 1 A I A 3 .)

( (A3.3)

Downton - Found numerically due to no closed form solution for
F(x).

Oakes - W - Fx x(AI(-~)d

0 (explAI l(-1)t) + exp(A 2(-lt)

(A3.4)
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BOUNDS ON NET SURVIVAL PROBABILITIES

FOR DEPENDENT COMPETING RISKS

by

John P. Klein1 and M.L. Moeschberger2

1 2
Departments of Statistics and Preventive Medicine 2

The Ohio State University, 1958 Neil Avenue,
Columbus, Ohio 43210, U.S.A.

SUMMARY

Bounds on the marginal survival function based on data from a

competing risks experiment are obtained. These bounds require an

investigator to specify a range of possible concordances for the tlimes to

occurrences of the competing risks. These bounds are tighter than those

of Peterson (1976).
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1. Introduction

A common problem encountered in biological and medical studies (both

animal and human) is to estimate the marginal survival function of the

time X, from some appropriate starting point, until some event of interest

(such as the occurr'nce of a particular disease, remission, relapse, death

due to some specific disease or simply death) occurs. Often it is

impossible to measure X due to the occurrence of some other competing

event, usually termed a competing risk, at some time Y(< X). This

competing event may be the withdrawal of the subject from the study (for

whatever reason), death from some cause other than the one of interest, or

any eventuality which precludes the main event of interest from

occurring. In such instances the actual time until the main event of

interest occurs can be regarded as censored (see David and Moeschberger

(1978) for further discussion of such censoring). With such a competing

risks representation, it is often assumed that this censoring time is

independent of the main event of interest. This allows for ti consistent

estimation of the marginal distribution of X, S(x) = P[X>x. This

assumption of independence is also made in more complex analyses of

competing risks experiments such as the use of log-linear models for the

analysis of survival data (Holford (1980)), the analysis of proportional

hazards regression of censored data (Cox (1972)), computation of

Hodges--,ehmann like estimators wit.l censored data (Wei and Gdil (1983)),

to name a few.

A standard statistical est imator of the survival function which

assitmes such competing events (or risks) to be indhependeit is the Product

Limit Estimator of Kaplan and Mei,.r (J958). This estimator is

in|onprlramel tri( and :onsist.ellt for the c.lass of constant SUm st'vlIVi, Ittodol;

defined by Willi ams in(l Lagakos (1977) When the iisks ' , n(Jt in this



class the Product Limit Estimator is inconsistent and, in such cases, the

uinvestigator may be appreciably misled by assuming independence (see
Lagakos (1979), Lagakos and Williams (1978), Moeschberger and Klein (1984)

for details).

In the competing risks framework we observe T = minimum (X, Y) and I
U.

x(X 4 Y) where x (') denotes the indicator function. It is well known

(see Basu and Klein (1982) for details and references) that the pair (T,I)

provide insufficient information to determine the joint distribution of X

and Y. That is, there exists both an independent and one or more

dependent models for (X,Y) which produces the same joint distribution for

(T,I). However, these "equivalent" independent and dependent joint

distributions may have quite different marginal distributions. In light

of the consequences of the untestable independence assumption in using the

Product Limit Estimator to estimate the marginal survival function of X,

it is important to have bounds on this function based on the observable

random variables (T,I) and some assumptions on the joint behavior of X and

Y.U

Peterson (1976) has obtained general bounds cn the marginal survival

function of X, S(x), based on the minimal and maximal dependence structure

for (X,Y) obtained by Frachet (1951). Let PI(x) = P(T > x, 1=1) and

P2 (x) = P(T > x, IO) be the crude survival functions of T. The bounds

are PI(X) + P2 (x) < S(x) < P1(X) + P2 (O).

These bounds allow for any possible dependence structure and can be

very wide.
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Slud and Rubenstein (1983) have obtained tighter bounds on S(x) in

this framework by utilizing some additional information. Their method

requires the investigator to bound the function

p(t) = [{s(t)/q 1(t)} - i]f [{S(t)/F(t)} ] (1.1)

where

s(t) = - d S(t)/d t, F(t) = P(min(X,Y) > t) and

qI(t) = d P(T < t, X < Y). Knowledge of the function, p(t),
dt

and the observable information, (T,I), is sufficient to uniquely determine

the marginal distribution of X. The resulting estimators S (t) are
P

decreasing functions of P('). The resulting bounds are obtained by the

investigator's specification of two functions,.Pi(x),(01 (x) < P2 (x)) so

that if the true p(x) function is in the interval [p1 (x), P2 (x)], for

all x, then S (x) < S(x) < S (x).

In the sequel we obtain alternative bounds on the marginal survival

function utilizing slightly different additional information. We assume

that the joint distribution of the time until death and censoring, (X,Y),

belongs to a family of distributions indexed by a dependence measure e

with arbitrary marginals. For this family, knowledge of e, along with

the observable information, (T,I), is sufficient to uniquely determine the

marginal distributions of X and Y. The resulting estimator S e(t) is a

decreasing function of e so that bounds on S(t) for the family of joint

distributions is obtained by specifying a range of possible values for 8.

2. -'e Model

The dependence structure we shall employ to model the joint distri-

bution of time until death and censoring time was first introduced by

Cliyton (1978) to model association in bivariate lifetables, and, later,

by Oakes (1982) to model bivariate survival data. A revision of this

model, with an underlying exponential structure, has been vroposed

-3-



by Lindley and Sigpurwalla (1985) and Hutchinson (1981) as a model for

system reliability in an engineering context.

Let S(x) = P(X > x) be the univariate survival function of death and

R(y) = P(Y > y) be the probability of not being censored before time

y (S(O) R(O) = 1, S and R continuous functions). For 0 > 1, define

F(x,y) P(X > x, Y > y) by

F(x,y) + R 1 l 0-1 -1/(0-1) (2.1)

This joint distribution has marginals S and R. As 0-1, then (2.1) reduces

to the joint distribution with independent marginals. For 0--,F(x,y)

min (S(x), R(y)) the bivariate distribution with maximal positive

association for these marginals. If (Xi , Yi) and (Xj, YV) are

: independent bivariate random variables with survival function (2.1) then

the probability of concordance is P [(Xi - X.) (Y. - YV. > 01 = 0,'(0 - i

so that Kendall's (1962) coefficient of concordance is r = (0 1)/(0- 1)

which spans the range 0 to 1.

The model (2.1) can also be derived from the following random

environmental effects model. Let X0 and Yo denote the potential time

to failure from the two risks, say death from a particular cause and death

from some other caus(e or causes. Suppose that in a perfect erivirounmerit

X0 and Y are independent with survival functions So(X) =

exp(- S(x) 1) and Ro(Y) = exp(- R(y) 1). The individual

lives in an environment where various environmental stresses or. biological

exposures may produce a random effect W which, in turn, changes the

potential times to occurrences, X0 and YO, to X and Y with survivali

functions SI(x) and Ro(y), respectively. A value (of w less

than one implies a joint. improvement in the survival probabilities for the

two risks, while a value of w greater than one implies ;t joini

degradlt.ion. [f W has a gamma disLriut ion with density
67-) -1 _I

g(w) - w e then t.he trinonditional distribution of

-4-



(X,Y) follows the form (2.1). The stresses or exposures which produce

this random effect w may be different biological exposures that are

characteristic of the individual's behavior, such as smoking or they may

consist, In part, by exposure to an environmental agent, such as asbestos.

This model also has a physical interpretation in terms of the

functions A(xJY y) = lim Pr(x<X<x+AxJY=y, >x)

and A(xJY > y) = oim ,Pr(x<X<x+AxJY>y, x>x) , the hazard functions

of X given Y - y and X given Y > y, respectively. These hazard functions

specify the Instantaneous rate of death or failure at time x, given that

the individual is censored at time y or later than y, respectively. From

(2.1) one can see that

A(xIY = y) = OA(xlY > y)

or

P(X > x(Y = y) = [P(X > xlY > y)] (2.2)

For 0 1 the hazard rate of death, if censoring occurs at time y, is 0

times the hazard rate of death, if censoring does not occur at time y.

This implies that the hazard rate, after censoring occurs, is accelerated

by a factor of 9 over the hazard rate if censoring had not occurred. Also

when 8 = 1, (2.2) reduces to the condition required by Williams and

Lagakos (1977) for a model to be constant sum and hence for the usual

product limit estimator of S(t) to be consistent (See Basu and Klein

(1982) for details).

For fixed marginals S and R the joint probability density function,

f(x,y), can be shown to be totally positive of order 2 for all 0 > 1.

This implles that (X,Y) are positive quadrant dependent. In particular,

one can show that, for S, R fixed, the family of distributions

F = (F(x,y): 9 > 1) is Increasing positive quadrant dependent in 0 as

defined by Ahmed, et al. (1979).

--



3. Bounds on Marginal Survival

Suppose that X and Y have the joint distribution (2.1) and let

T min (X,Y), then the survival function of T Is

1F(t) -+ 1] i-1 (3.
t) R(t)

and the crude density function associated with X,

dtql(t) d ( < t, X < Y), is given by

ql(t) s(t) [F(t)f, (3.2)SO(t)

wheLe s(t) = -dS(t)/dt.

Now consider the differential equation

is(tl/S (t) = q 1 (t)/ V(tOf (3.3)

and suppose e is known. Then the solution of (3.3) for S(t) is

t q 1(u) Iql~u) -(e-l)
S (t) [i + (9-1) j [ u)L. du if 6 >1

0 [(uF~j

(3.4)
t q1 (u)

exp( - I F(u) du) if = 1.
0

The functions F(.) and ql() are directly estimable from the data one

sees in a competing risks experiment. Let TI, ..., Tn denote the observed

test times of n individuals put on test and let Ii, i = 1, ... , n be 1 or 0

according to whether the T.i was an observation on Xi or Yi. respectively.
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n n

Define (t) = EX(T 1 > )/n and Q(t) - CX(T, < , , 1 " )/n.

Then if 9 is know, a natural estimator of SO(t) is
o1'

S (t) - (6-1) j PuP Iif B > 1.

(3.5)

t dQ1(u)
exp( - I - ) if e8,. o (u)

For 8 = 1. this estimator is of the form of the hazard rate estimator

proposed by Nelson (1972). The estimators (3.5) can be expressed in the

following forms for computation purposes when there are no ties.

=1
"6n-)nlT if 6 > I

J((10.6)

exp -(n-i+l) i

T if B =

where T(1 ).. . .. . T (  are the ordered death times or censoring times.

For 9 known and if the true underlying joint distribution of (X,Y) is

of the form (2.1) then Se(t) is a consistent estimator of S(t) as

shown in the Appendix.

To obtain bounds on the net survival function based on data from a

competing risks experiment, we proceed as follows. First, note that from

(3.4) it is true that Se(t) is a decreasing function of 9 for fixed t.
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t
Also, as 9 1+ we have S (t) t exp (-f F- (u)dQ1 (u))

0

which provides an upper bound on S(t). Notice that this upper bound

corresponds to an assumption of independence. As 0 - - one can show that

S0(t) 4. F(t) which corresponds to Peterson's (1976) lower bound.

In practice the above bounds, with 0 = 1, -, while shorter than

Peterson's bounds may still be quite wide. Tighter bounds, in the spirit

of Slud and Rubenstein, may be obtained if an investigator can specify a

range of possible values for 0, {01' 82). If the sample size is

sufficiently large and 01 4 0 0 2, then S9(t) 0 S(t) S $ 02t).

Two approaches to specifying 01, 02 are appropriate. From (2.2) note

that 0 = A(xlY=y)/A(xlY>y) for all x, y, so that 01 and 02 are

reflections of the investigators belief in how the hazari rate of X would

3 be effected by knowledge of the occurrence of censoring at time y.

Secondly, specification of 01, 02 is equivalent to specifying a range

of values for the coefficient of concordance, r, between failure time X

and censoring time Y, since 0 = (1 + z)/(l - r).

4. Examples and Discussion

To illustrate the bounds obtained in the previous section consider an

experiment performed at the Oak Ridge National Laboratory. The experiment

we consider consists of treating a group of 246 RFM female mice with 75

rads of gamma radiation delivered at 45 rads/min. at 12 weeks of age.

Mice which were judged by the biologist to be moribund and not likely to

survive until the next observation period (either overnight or over the

weekend) were sacrificed. This action, which caused mice to be removed

from the study before the endpoint of death was observed, was necessitated
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by the need to determine by necropsy which of several types of tumors the

animals had at death since the status of such tumors was difficult to

determine in animals which lay dead in their cages for an extended period

of time. The value of r=1 (0=o) assumes that the moribund animals would

die at a time coincidental with the sacrifice time. It should be noted

that the data was actually analyzed under this assumption. Animals which

were sacrificed prior to a weekend were probably more likely to live an

additional time due to the conservative nature of the decision making. It

is clear that the sacrifice (censoring) time and death time of these

animals are highly associated, the value of r probably being somewhat less

than one.

A lower bound of r, though somewhat subjective, may be based on the

investigator's experience with such experiments where moribund mice were

not sacrificed. In this instance, r of .8 seems reasonable. The value of

S0(t) for r = .8 and 1.0 as well as the product limit estimator

assuming independence (a statistical procedure which may also be used by

some people) is depicted in Figure 1. One can see that the bounds for the

survival function (assuming .8 4 r < 1.0) provide a relatively tight band

of survival functions. It is also clear that the product limit estimator

assuming censoring times independent of death times is probably not

appropriate.

Consider a second study which illustrates a different type of

censoring mechanism. A clinical trial was conducted at The Ohio State

University to determine the objective response rate of patients with

refractory advanced non-Hodgkin's lymphoma to a chemotherapy regimen

consisting of ifosfamide, VP-16, cis-platinum, and bleomycin. Twenty-four

patients were entered (staggered entry) and treated with ifosfamide 750

-9-



I FIGURE 1
ESTIMATES OF SURVIVAL FOR RFM/UM MICE

C3

a:

(D --ESTIMATE OF S(TIt TREATING MORIBUND AS INDEPENDENTLY CENSORED
0]--ESTIMATE OF S(T): TREATING MORIBUND AS DEATHST -1.0
+ --ESTIMATE OF S(T): TREATING,T =0.8

%.oo 1'5.00 25. 0 3'5.00 45.00 55.00 653.00 715.00 '85. 00
TIME *10'
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mg/m2/day by continuous I.V. infusion on days 1-5. VP-16 40 mg/m2 I.V. on

days 1-5, cis-platinum 50 mg/m2 I.V. on day 14, and bleomycin 15 units/m2

I.M. on day 14. The regimen was repeated every four weeks. Patients were

evaluated at the beginning of each course for objective response based on

change in size of bldimensionally measurable solid lesions. Ten patients

were removed from study due to progressive disease [defined as a 25% or

greater increase in the size of measurable lesions]. This is an

indication that the patients are doing quite poorly. Eight patients were

removed from study due to stable disease after three courses (an

indication that the disease is still not in remission). Six patients died

during study course. This study is fairly typical of small scale

chemotherapy trials conducted at the center.

As in the previous example, here the times for patient removal from

the study (censoring times) are clearly not independent of death times.

The determination of bounds for r, in this instance, is not as obvious.

However, we think there are some reasonable possibilities which utilize

the clinician's subjective understanding of the history and progression of

the disease.

First, the clinician may be asked to select an upper and lower bound

for r from a set of classifications for association such as no

association, r = 0; weak association, r = .25; moderate association, r =

.50; strong association, r = .75; or perfect association r = 1.0. Second,

the clinician may be asked to give a range of r on a scale of 0 to 1. We

note that this may be hard to obtain due to the physician's unfamiliarity

with the concordance coefficient (see Kadane (1980) or Winkler (1980) for

a discussion of this problem in the elicitation of opinion in the linear

model framework). Third, if the clinician cannot make either of the first

two judgments then he/she could be presented with a set of partial death

-11
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or censoring times, such as ( , 120), (77, ), (82, ), ( , 113), etc.

and asked to guess upper and lower bounds for each missing time, or as in

B Kadane et. al. (1980) to provide quantiles of the predictive distribution

of the missing times. Based on this information an upper and lower T

could be computed. The program TROLL, described in Kadane et. al. (1980),

which was designed to elicit opinion about the prior distributions of use

in linear regression could be used to obtain a prior confidence interval

for the value of the correlation coefficient p under an assumption of

normality and then using the transformation r=(2/7r) arcsin 4p a range of

values for r is obtained. In an attempt to provide a more stable estimate

of this range, a group of clinicians may be asked to make such estimations

and the group's values may be used to obtain a range on

Finally, charts of patients treated with this regimen might be

reviewed and information from these charts be used to estimate the missing

3times. Information in the literature may also be used to estimate the

missing times. Confidence interval methodology for r may than be used to

obtain a range of r.

In Figure 2, we have plotted S(t) for various values of r which

correspond to a broad subjective range of r. Based on discussion with

physicians in the OSU Comprehensive Cancer Center, a subjective range for

r was from weak to strong association between times to progression or

stable times and death times. This suggests using bounds corresponding to

r = .25 to r = .75.

-12-



FIGURE 2
BOUNDS ON SURVIVRL FOR NON-HODGKINS

LYMPHOMR PRTIENTS
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Appendix

Theorem 1. Let (XY) have the form (2.1) with marginals S(t), R(t)

respectively. Let 0 > 1 be known. Then on the set where S(t) > 0 we have

50(t) - S(t) a.s.

Proof of Theorem 1:

For e 1, the result is well known. Suppose that 6 > 1. Note

that Q1 (t) QI(t) - P(T !C t, x-y) a.s. and F(u) ) F(u) a.s. by the strong

law of large numbers. Since Se(t) is a continuous function of

( in the support of F(u), it suffices to show

0 [F(u))

t t dQl(u)

0 [ F(u)] 0 [F(u) a

Now, after an integration by parto,

t dQj(u) Ql(t )  t

0 [ - e Q1 (u)d( 0  )
[ (u) -  [F(t)] 0 F (u)

(t) tt1
Q1 (t) (u)d( ) + I Ql(u)d ( I

t) 0 Q(u) 0 F(u)

Ql(t ) _ Ql(t )

- I tQ(U) - Q (u)]d(0
([)Fu 0 (u)

t dQ (u)
+ I

0 F (u)

By the dominated convergence theorem

tdQl (u) C

lim f d f dQl(u) a.s.,
0 [F(u)f 0 IF(u)P



n- ~ 1 jt =UI 0 a.s.,

and
lim sup {jQ1(u) - Q1(u)j} - 0, a.s.

Hence, applying the above results to (3.7), the result now follows: I
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The problem of testing for independence of the componient lietimes when the components are
lInked in series is considered. To avoid the problem of nonidentifiability, the marginal component
lifetimes are assumed to be known. In this setting, a nmodified version of Kendalrs tau is proposed.
This test statistic is obtained by replacing those component lifetimes which canniot be observecl, due
to system failure, by conditional probabilities computed under independence. A small scale
simuliation study of the power of this test shows the test has reasonable power for relatively small

sa esizes,

1. C8EDN ~SY~

A common assumption made in modelinig series system is tha t Wrponert lifetimes are
statistically independent This assumption is also routinely made in analyzing data collected from
series systems. Recently, lein and Moeschberger (1983) and Moeschberger and Klein (1984)
have shown that one may be appreciably misled by this independence assumption for certain
bivaniate exponential systems.

To illustrate the effects of tis independence assumpion. consider the following two modelsU for the joint survival function of the component lifetimes (XXY). The firs model, due to Oakes
(1982) has joint survival function

H;(x,y) - P(XX, Y>y) a j1/iF(x))~1. 01I6(y)) 1 -1) -1/(8 -1), e >1 (1. 1)

where F(-), Go- are fth marginal survival functions of X and Y respectively. This distribution has
a coefficient of concordancet - (9-0)/(W+) and 0 - 1 oorresponds to independent component

* failure times. If X(x(Y~y) and JL(xfY>y) denote the conditional hazard functions for the conditional
distributions of X given Y - y and given Y > y, respectively, then )L(xjV>y) - B)L(xlY>y).

A second model, due to Gumbel (1960), has joint survival function

H(x,y) - F(x)G(y)(1 +*(I-F(x))(1 -G(y)fl, - I <a <1 (1.2)

This model has coefficient of concordance -t - 2ai9 which, unlike the Oakes model, may be both
positive and negative.

To illustrate the importance of the independence assumption in modeling the system life,
consider figures 1 and 2 where the 95th and 99th percentile of system life is plotted for the two
models with exponential marginals. Here in all cases the first component has unit mean life. For
the Gumbel model, the true percentile ranges from 800/ to 115% of the percentile computed under
independence, while in the Oakes model. the true percentile can be as much as twice as big as the
percentile computed under independence when 12 -X and as much as 1. 5 times as big when X2=2-



236 J.P Klein

Sir= Ome may be appreciably misle by erroneously assuming independent component
lifetimes, it is desirable to test this hypothesis bsdon data from series systems. However, ff no
assumptions abou the undiving distribution Of t component liimes is made, such a test is
impossibl due to the identifisibility problem (see, e.g.. Tsiatis (1978), Miller (1977), Basu and
Klein (1962). This is, give any set of observable Wnonnatlon (such as system life, crude
system Mie, etc.) collected from a series system with dependent component lftimes, ther exists a
sries system with independent component lifetimes with "~ samie observable information (see
Langiberg, Prosdian anid luimi (1981)). However, tie comparable system of independent random
variables need niot have the same marginial component lie distributions as the dependent structure.
I particular. the marginal distributions of the two systems are the same only for the class of

C01 ont sum m defined by Wiliams arid Lagakos (1977).ln

In fth next section, a modification of Kendalls (1938) test for independence is proposed.
Ths tes assumes tho the marginal component Wie distributions are completely specified. This
ir*rmation could be obtained by testing each componert separately, as is often done in te
development sgages of system design (see, e.g., Easterling and Prairie (1971), Mastran (1976),
or Miyamura (1962)). In section 3, a simulation study compares the power of this test to the
pmrslc tem ban othe Oelra anid Gumtelml.,

2. 'fl'E TES PROEE

Supp ow itvo compoet seies systemae puton test Let)X1, Ydenote the potential
(unobservable) failure times of the first and second components of the ith systems. We are not
allowed to observe (1, Y1) directly, but instead we observe Ti - mino(i, Yi), the system failure
Wie and

IfOT 1 I 1
II - (the cause of the system failure
0 if Ti - (

Also suppuse thast the maginal survival functions of Xi arid Y1. F(x) - P(Xi > x) and d(y) - PY
y), i =l1..,ne known.

I we could observe both Xi- and V,, then a test of independence, due to Kendall (1938), is to
count the number of concordant pairs and the number of disicoardant pairs. A pair (Xi, Y1), (Xi,
Yj) is Concordant if Xi - -an Y Y have the same sign and is discordant if these differences
have different signs. The test statistic is then the number of concordant pairs minus the number of
discordant pairs.

N the data comes from a series system, then only Ti, lI is observed. Suppose we consider a

.Yi, Xj < Yj This pair would be concordant, regardless of the value oftvpif Ti<Yi <T. If Yi> Ti
cnodance or discordance depends on the value of Yj. Under the null hypofthsis of inidependence.

the conditional probablity that the pair is concordant is (G(T,) - Gff1)YG(Ti) - P(Ti < Y < T1iY >
Td)since average concordanceeover the range Y > Tiis 0. When i - I arid l=-0, then Ti -Xi <.04=
Ti, Xi < V ,Yi <Xi. Here if Ti Y1&<T, the pair would be concordant, and if Yj> Tjthe pair would
be discordant, whatever the value of Xi. Uinder independence, the conditional probablites; of these
two events are [G3(Ti) - G(T1)I/G(T1) and G(Tj)IG(Ti), respectively. Should li - 0, similar
probabilities, involving F, could be obtained. This motivation suggests the following score function
for Ti < Ti.
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f @Tj) -(Tj)Jd(ri) if ii - lj - i) F(T,) - F(TjI/F(Ti) if li -li-a0
OTA.ljT. 1) - (3(T) -2G(T)/(T) N i.=1, 1=-O (2.1)

INT -FT 2F(Tj)IIF(Ti) iN Ii - 0, Ij

and Simiilarly for Ti Tj.

The modied versio of Kendaffs teot statistic is

-I ofI (Ti,Tj.) (n(n-i)/2) (2.2)

To find toe momienta of % wf udr dependence onider the pans

(T1,11), (T2,12). Lot A, -fr c <T 2,11 . 12 - 1). A2 -{(T 1 <T2.11 - 1,12 -O), A3 -[T I
T2, 11 -C), 12 -0) anidA 4 =r - T<T2,11 - 0, 12 w S Inltermsof toeunobservable com~ponent
ifetimes. (X1i, Y1). Al - {XI1 c X2, X2 <c Y2, X1 -cY1 ) A2 - (XI < Y'2, X1 < Y1, Y2 ": X21, A3 - (Y1
Y2 1' 1-Y 2 n 4 Y cX i<XX j Sinc,bysytr~, T, is equally
likely to either smaller or larger than T2 , we have

G(xl)-G(x2)(12)E((T 1 ,1 ,T2,12)) A, J ---- dF(x1 )dF(x2)dG(y1 )dG(y2)

+ Gi(x1 )-2G (Y2)
A2  G~x 1) dF(x1 )dF(x2)dG(y1 )dG(y2)

+ FIl------ dF(x1 )dF(x2 )dG(y1 )dG(y2 )(23
. A3  F(y1)

+ I F~y---2F---- dF(xl)dF(x2 )dG(y1)dG(y 2)A4  Fly,)

J1 + J2+ J3+ J4 (say).

Now, consider

J1. J2  I ( (G(x)-G(y)]G(y)dF(y) + f [G(x)-29(y)JF(y)dG(y)ldF(x) (2.4)

Integrating the first inner integral in (2.4) by pants yields the negative of the second integral sothat J, + J2 - 0. Similar computations Show that J3 + J4 0. Thus E(*(Tl, 11, T2, 12)) and
hence E M., are both, 0. By similar computations, one can show that

n(n-I)V(r) - (4/3) 1 G(x) 2dF(x) + (4/3) 1 F(x)2dG(x)
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-4 G(x)"1 F(y)G(y)2dG(y)dF(x)
- x

-4 1F(X)-l IG(Y)F(Y) 2dF(y)dG(X)

+ 4(n-2) {2t3 - 21 F(x)G(x)d(F(x) + G(x)) (2.5)
i --

- 2 TF(x)2 G(x)2d(F(x) + G(x))

+ 3 rF(x)2G(x)dF(x) + 3 rF(x)G(x)2dG(x)), where F(x) = 1 -?(x)
-eM -W and G(x) =1 - G(x).

The asymptotic normality of - follows by the results of Hoeffdng (1948). Hence, a test of
idependen versus dependence rejects if 0/ V(MJ is greatr than the appropriate percentage
pint of a stda.d normal randon variabM. A est of independence versus posiv dependence
rejects if f/ V(f) is too large.

The variance of v (25) can be expressed explicitly in several cases.

Case 1. F x) G(x). In this case (2.5) reduces to
V(g)- (4n+7)/(30n(n-1)L - (2.6)

Case 2. (Lehmann structure) F(x) - G(x)U. Here (2.5) reduces to

i n(n-1)VA a S t[35a + n(9. " + 2a + 9))43(3a + 1)(3 + a)(2a + 3)(3a + 2)]. (2.7)

Case 3. (X, Y exponential), F(X) - e" 1x, G(y) - e-ey, then (2.5) reduces to

n(n-1)V~t) - 8Mg{35Xe + n(9X2 + 2Xe + 902)) (2.8)

m 3(3), + 0)(), + 30)(2X + 30)(31 + 2e)

When the true valusof F, G are misspecifiled, then E() is not zero. If the true component
lifetime distributions are F, G but a

, G are used in formula (2.3), then one can show that, under

E(t) = 2(1-p) I6(x)1 P 1 F(y)G(y) dG(y)dF(x)

+ 2(1-<*) 1 F(x)I"c= G (y)F(y)°2dF(y)dG(x), a, [0 > 0.
If t

If '(') - G('), then E( = ( -1)12(13+2) +. (a-1)/2(a+2).

i- II -0
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If F(x) G (x)9, then E(,) - (#/(0+1)){(1)(.0) .

Similar expessions can be obtained for the null variance of~

3. SMULAflCtJ SThICyf

To study the effectiveness of the modified Kendalrs z described in section 2, a simulation
study was conduicted. The Study was paulormed by generating IDOO sam~ples ofD -20 or 40 series

systems with exponentially distributed component life times, F(x) -ex and G(y) - e-42y, X2 -
1, 2. Both the Oakes joint distribution (1.1) and the bivariate Gumbel distribution (1.2) were
used' The bivarat observations from the Oakes distribution were generated using the technique -

described i section 2 of that paper. To generate Gumbel random variables with marginal survinval
fucosF(x), d(y), let U1,- U2 be independent uniform random deviates. Note that

g(xjy) m p(X > xjy y) . F(x)(1 +,.2z(y)) - J(x)2(1-2((y)). (3.1)

Let U1 - 6(y) and U2 - F(xly) - F(x)1I +c-2LU,] - o(x)2(1-2U 1).

SoiNg this equation for F(x) yields

F(x) -U' -[(I(1.12U,)) - a(1.a2(1-2U1)2 
.i.2 1 (1-2U,)(1-2U,)) 1/ 1]

/2a(1-2U 1), U1 0 1/2 (3.2)

which is the root which lies inthe interval0,1. 9 U, - 1/2, then UaU 2. The pair (X, Y)is
then found by X -7F1 (U'), Y (' (U1).

For the purpose of comparisn thes paramet tests for independence, based on the effident
scrsstatistics, for t Gumbel and Oakes mde were obtained Consider first the Gumbel model

(1.2). Using the notation in section 2, the observable crude density for I a is

where f(t) - -(dtdt) F(t). and a similar expression for qO(t) when I - 0. Based on a sample of n
series systems, the likelihood function is

n
qa - I (j qo(V''I-1. (3.3)

After some simplification, the likelihood equation at a -0 is
n

(d/daG lnL(a) I -W - n. - F(tj) + G(tj) - F(tj)G(ti) + 11G(tj) + (1-1j)F(tj)
a-0 1.1

Also. when X and Y are exponential with parameters X1, X2. repectiely, then

2G- - E(d2 ln(cu)/dca2) - ni (7/3 +q ()Lj + 4 X)/ (~i X1 + 2)



A Test for Independence 241

The elficient scores test of fth hypothesis ct - 0 s then W/dG which has an approxmate standard3 normal distribution when a - 0.

For the Oakes model (1.1), the crude density functions are of tha form

q, Mt - t(t)/Pt S(t)8 where (3.4)

im (00F~~ -1 + (1/6()o -1-1 - 11( -1) (3.5)

m From (3.3), the log likelihood for 01is

n
lnL(s) 19 li ai +e (1-lj)bj + a (lnDp)/(e -1) (3.6)

j-1
where a1 - -lng(tj), bj- nF(t1). and 01- (( -~18 + e(S -1)b .1j

The likelihood equation is

(dCdedln L(S) - Zja + (1-11)bj-( + 11(9 -1))y~j*6)j+ (-))D

n
i(( -1)) O1  

(3.7)

n n
which is equal to V . Z: (a11+(-j)). + (ajbl.aj~b) (3.8)

j-1 j-1 )

as 0 -*1+. The E(-(d2/d82) lnL(8)) ate 9 1, under the exonetial model is

ca 2 - 2n X 1 ( X, + L22so the resulting score statistic is

n n

j-1 j-1

* which is approximatelly standard normal for large n when - 1.

The results of t study are reporte In table 1. From this tabl it seems like the modified -r
test has reasonably good power when cornpere to t parametric tests, although companion with
the Oakes score testis herd since the sigificance level of that testis inflated. Also the test based on
10 Cthe tb scores has cOmPrable Power when the data istom te 0*0e model. A test for
normality done on the samples where the comp ont were independent accepted the nrmaity
assumrption for te modfied c test.

Table 2 reports toe observed number of rejections when t component parameters are
estimated based on independent sam~ples of siee 50 for each com ponea A .05 significance level was
Used. Here, when X1 - XZ all tests have inflated levels. When X1 *k the tests are conservative.
Al tests hame comparable power when X1 )Z~ however, the modified -t test has significantly
higher power whenx )L2.
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in adition to te power ot our modfied test, tie E l) was estated for each sample. Except
in ie indepeft dlenc case, to sinulaton showed ltat E() - .35t, suggesting t is of limited use as a
point e0ma" or v.

TABLE I
Estimated Pow IW True Parameter ValM

Based On 1000 Repliations

MI . 13 S a -.OS a - .025 a - .05 a- .025 a -. 05 a -. 025 -

kidend (X21) 20 0 50 25 71+ 52+ 58 37
KSPepent 01-1) 40 0 42 21 57 34 54 36

bId e k4) 20 0 53 25 74+ 52+ 62 34
) dependent p2-2)40 0 55 32 74+ 49+ 69 37

Gumbel (m1) 20 .125 99 55 115 a8 133 78
Gumbel (;21) 40 .125 158 96 159 124 192 124
Gumbel (X2.2) 20 .125 119 74 128 8 141 100
Gumbel (A2-2) 40.125 158 88 146 111 176 116
Gumbel (x2-1) 20 .222 182 117 172 130 245 175
Gumbel (121) 40 .222 283 199 239 179 323 257
Gumbel (X.2) 20 .222 188 110 160 130 205 143
Gumbel (X2.2) 40 .222 278 181 221 159 316 237
Oakes (Ir1) 20 .125 170 114 236 202 184 137

Oakes (X21) 40 .125 224 154 327 273 247 185
Oakes (-2) 20 .125 166 101 231 207 179 125
Oakes (X-A 40 .125 228 148 313 253 248 166
Oakes (Xr1) 20 .25 318 243 421 377 379 295

Oakes QX.1) 40 .25 484 394 614 551 510 443
Oakes (Xr2) 20 .25 334 223 386 335 354 273
Oke (X.-2) 40 .25 513 338 555 483 522 407
Oakes (X2'1) 20 .50 638 535 704 670 680 606
Oakes (X1) 40 .50 880 802 903 875 881 851
0ake (L22) 20 .50 657 589 615 547 674 593
Oakes (a-2) 40 .50 894 823 816 772 873 820
Oakes (X.1) 20 .75 799 722 803 763 858 795
Oakes (X.1) 40 .75 973 946 983 968 925 900
Okes ()2) 20 .75 899 847 699 631 823 763
Oakes (2.2) 40 .75 995 989 924 884 985 961
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TABLE 2
Esimaled Power Uskri Estimaled PuaneWW Values

and 0.05 Sigdfcance Level

tedenut 20 0 83 18 96 1 69 1
ftoiedut 40 0 64 17 83 1 81 1

= Giari 20 .125 136 42 141 3 159 4
Gwitd 40 .125 214 30 200 3 242 4

Glumbal 20 .22 209 68 201 6 255 10
G~alte 40 .22 331 62 276 10 360 9

C01ft 20 .125 202 48 263 40 211 8
0911 40 .125 276 54 .354 13 284 1

Cdw 20 .25 327 146 430 55 388 29
Ca 40 .25 513 158 628 48 542 20

ad" 20 .50 638 400 699 93 655 92
C0108 40 .50 858 558 827 99 865 102

Odes 20 .75 781 737 793 76 828 84
Oak 40 .75 956 916 947 112 962 138
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A Comparison of Several Methods of Estimating the Survival
Function when There Is Extreme Right Censoring

M. L Moeschbergere and John P. Klein2

-" I Departments of Preventive Medicine' and Statistics, The Ohio State University,
320 West 10th Avenue, Columbus, Ohio 43210, U.S.A.

SUMMARY

When there is extreme censoring on the right, the Kaplan-Meier product-limit estimator is known to
be a biased estimator of the survival function. Several modifications of the Kaplan-Meier estimator
are examined and compared with respect to bias and mean squared error.

1. Introductiom

In human and animal survival studies, as well as in life-testing experiments in the physical
sciences, one method of estimating the underlying survival distribution (or the reliability
of a piece of equipment) which has received widespread attention is the Kaplan-Meier
product-limit estimator (Kaplan and Meier, 1958).

For the situation in which the longest time an individual is in a study (or on test) is not
a failure time, but rather a censored observation, it is well known that there are many

m complex problems associated with any statistical analysis (Lagakos, 1979). In particular,
the Kaplan-Meier product-limit estimator is biased on the low side (Gross and Clark,
1975). In the case of many censored observations larger than the largest observed failure
time, this bias tends to be worse. Estimated mean survival time and selected percentiles, as
well as other quantities dependent on knowledge of the tail of the survival function, will
also exhibit such biases.

*1 A practical situation which motivates this study is a large-scale animal experiment
conducted at the National Center for Toxicological Research (NCTR), in which mice were
fed a particular dose of a carcinogen. The goal of the experiment was to assess the effects
of the carcinogen on survival and on age-specific tumor incidence. Toward this end, mice
were randomly divided into three groups and followed until death or until a prespecified
group censoring time (280, 420, or 560 days) was reached, at which time all those still alive
in a given group were sacrificed. Often there were many surviving mice in all three groups
at the sacrifice times.

In general, we consider an experiment in which n individuals are under study and
censoring is permitted. Let t1, ... , t(.) denote the m ordered failure times of those m
individuals whose failure times are actually observed (t(1) 4 ... e t(.)). The remaining
n - m individuals have been censored at various points in time. It will be useful to introduce
the notation S, to denote the number of survivors just prior to time t (); that is, S is the
number of individuals still under observation at time t(p , including the one that died at
tip. Then the Kaplan-Meier product-limit estimator (assuming no ties among the 1(,)) of

Key words: Adjusted Kaplan-Meier survival estimation; Bias of survival function; Life-testing; Right
censoring; Survival analysis.
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So, by the theorem on order statistics stated at the beginning of this section, the conditional
distribution of T(.), given T(-., = 4, (u - n - n, + 1, ... , n) will be approximated
by the (u - n + n,)th order statistic in a sample of n, drawn from (3). For simplicity, let
j = u - n + n,, so that j= 1,..., n.Now the expected value of the jth order statistic from
(3) is

E(T, ~ - e t~T~ 1/d)

, f (yk + tk)l fP(y)W-'[P(y)]1'-'(kyk-'I6) dy (4) -

where P( y) ,= exp(-yk/), y .- (tk - fk)k ; 0 and Tj:,, is the jth order statistic in a sample
of size n,. Equation (4) can also be written as

E(Tj:.,) n, n(e i)j (Gzk + tk)I'kqp(z)1J-[P(z)uc-J+Ikzk-I dZ()

where P(z) _ exp(-zk), z - (y/O) sIk ; 0. Now E(Tj:n5 ) may be crudely estimated by

i[E(ZJ:.,)] + tel Ilk (6)
where E(Z,:.,) is the expected value of the jth order statistic from a sample of size n,
determined from Hater's (1969) tables or recurrence relation, and 9 and k are maximum
likelihood estimators of G and k, respectively.

These n, estimated expected order statistics may then be treated as "observed" lifetimes
in adjusting (or "completing") the estimated survival function computed in (1). The area
under the estimated survival function up to t, remains unchanged. The area under the
extended estimated survival function based on the n, estimated expected order statistics is
then added to the initial area to obtain a more precise estimate of P(t) (estimated order
statistic (EOS) extension].

2.2 Weibull Maximum Likelihood Techniques

A straightforward approach to completing P(t) is to set
P(t) = exp(-tk/O) for t > t. (7)

Estimates of k and 0 based on all observations can be obtained by either the maximum
likelihood (WTAIL) or the least squares method. However, our study found the completion
using maximum likelihood estimators was always better in terms of bias and mean squared
error.

One suggestion for ostensibly improving this estimator would be to "tie" the estimated
tail to the product-limit estimator at re. Two methods were attempted to accomplish this
goal. First, the likelihood was maximized with respect to k and 0 subject to the constraint
that exp(-t/0) - P(te). This method will be referred to as the restricted MLE tail probability
estimate (RWTAIL extension). Second, a scale-shift was performed on the tail probability
in (7) to tie it to the product-limit estimator. This method led to higher biases and mean
squared errors of the survival function and will be dropped from further discussion in this
paper.

2.3 BHK- Type Methods

The Brown-Hollander-Korwar completion of the product-limit estimator sets

P(t) = exp(-t/0) for t > t, (8)
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3. A Comparison of the Various Methods

A simulation study of data such as that collected at NCTR was performed. Three groups
of 48 lifetimes were simulated with all testing stopping at 280, 420, and 560 days,
respectively, for the three groups. Distributions with mean survival times of 400, 500, and
600 days were used. The generated lifetimes greater than or equal to the sacrifice time for
each particular group were considered as censored. The remaining set of observed lifetimes,
along with the number censored at the three sacrifice times, constituted a single sample.

- i For each of the distributions studied, 1000 such samples were generated. Weibull distribu-J tions with shape parameters .5, decreasing failure rate, 1, constant failure rate, and 4,

Tabe 2
is/ to0 (and MSE/ 1002) for estimating 90th percente for various methods of completion

Restricted
Estimated Weibull Weibull

BHK Mier sttiuc WrAIL RWTAIL
Distribution i K-M extension extension extenion .extension

Weibuil 400 -5.017' -2.858 1.691 .234b  .458
(25.185)' (9.358) (16.424) (7.524)P (10.812)

k -.5 500 -7.655" -4.620 1.897 .418P .642
(58.604)' (22.711) (24.276) (14.3 19) (21.442)

-10.306 -6.390 2.213 .734b  1.064
(106.21)" (42.449) (36.895) (25.419? (37.911)

400 -3.610 .064' .248 .084 .067
(13.035) (1.892) b  (2.423) (1.980) (2.945)

k - I 500 -5.913 .096' .289 .121 .306
(34.963) (2.95r (4.681) (4.361) (5.903)

600 -8.216' .2446 .610 .418 .550
(67.459)' (4.198)' (9.247) (8.33 I) (10.792)

400 -. 045 .098' -. 007b -. 037 -. 011
(.038)' (.236) (.060) (.047) (.063)

k-4 500 -1.195 5.324 -. 031 -. 026 .024b

(1.429) (33.091) (.146) (.141) (.177)
600 -2.554 17.913" .120 .090 .068b

(6.524) (355.02) (.794) (.676) (.641)

Losomal 400 -2.628 -. 044b -1.263 - 1.758 -. 967
(6.908)' (1.526)' (1.979) (3.407) (1.673)

k- 1 500 -4.680 .213' -2.354 -2.718 -1.908
(2 !.902) (2.708)' (6.153) (7.909) (4.751)

600 -6.736 .759b -3.507 -3.766 -2.980
(45.373) (4.764)P (13.123) (14.981) (10.257)

400 -. 085 .161 -. 038 -. 162 -. 024b

(.060)' (.409)' (.081) (.065) (.093)
k-4 500 -1.251 3.722' -. 584 -. 657 -. 4&4b

(1.566) (17.654) (.403) (.495) (.318P
600 -2.621 13.695" -1.214 -1.236 -1.1586

(6.872) (210.30)' (1.616) (1.662) (1.498)b
Bathtub 400 -3.629" -. 177 .053 -. 104 .105

(13.167) (1.717) (2.052) (2.058) (3.190)

pM. 500 -6.068 -. 457 -. 071 -. 208 .004'
(36.826)- (2.955) (4.702) (3.619) (5.245)

600 -7.997" -. 318 .043 -. 244 -. 014b
(63.954) (4.330)P (7.786) (7.608) (9.923)

400 -. 347 .143b .276 1.154' .981
(.273)' (.844) (1.078) (3.877) (4.747)-

p- .4 50 -1.425 .521b .764 1.699 1.718"
(2.035) (1.540r (2.067) (8.574) (10.714)

600 -3.554' -. 137 .132" 2.304 2.450
(12.628)' (1.804P (2.352) (17.530) (22.456)

Best estimation method.
'Worst estimation method.
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A Partially Parametric Estimator of Survival in the
Presence of Randomly Censored Data
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John P. Klein
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Shin-Chanq Lee3 epartment of Mathematics and Computer Science
Florida Internationai University

Miami, Florida

M. L. Moeschberger
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Summary

Many biological or medical experiments nave as their goal to estimate
the survivai function of a specified population of subjects when the time
to the specified event may be censored cue to 'loss to foliow-up, tre
occurrence of another event which prec ludes the occurrence OT the event of
interest, or the study being terminated before the event oy interest
occurs. This paper suggests an improvement or the Kapian-Meier
proauct-limit estimator when the censoring mechanism is random. The
proposed estimator treats the uncensored observations nonparametrica ly
ana uses a parametric nel only for the censored observations. Une
version or this proposed estimator aiways has a smai er bias and mean
squared error than the pcoduct-limit estimator. An example estimating the
survivai function of patients enroi led in rhe Ohio State University Bone
Marrow Transplant Program is presented.

Key words: Censored Observations. Survival Function Estimation.
Product-'limit Estimator
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1. INTI.O.UCTICON

The problem of analyzing data from experiments or clinical trials for

which the time to occurrence of tne primary event of interest (such as

death, appearance of a tumor or other morbid condition, component failure,

etc.) may not be directly observable due to the occurrence of some

competing risk of removal from the study (such as loss to foliow-up, eariy

terminaticn of tre study, failure of a different cause or component than

the one of interest, etc.) arises in biological, medical, or engineering

sciences. In engineering applications, the data may be censored wrn one

analyzes experiments involving series systems with several failure modes,

testing of field equipment with a fixed test time and random or staggered

entry, Type I or Type If censored life tests, or any combination thereof.

In medical applications, data may be censored if we are conducting a

clinical trial with fixed study time and random or staggered patient

entry, a clinical trial in whicn patients are lost to follow-up, or a

clinical trial in which there are multiple causes of failure but interest

centers on only one of them. In all of trese studies, interest focuses on

estimating the underlying survival distribution of the time to occurrence

of the primary event of interest.

In the above settings one of two primary methods of analysis is

usualiy employed. First, a distribution-free estimator, suggested oy

Kapian and Meier (1958) is often routineiy usea. Alternatively, maximum

likelihood methods may be used to estimate the survival function wren the

survival distribution belongs to some parametric family.

Both of these approaches have some shortcomings. While the

Kaplan-feier nonparametric estimator has many aesirable large sampie

properties, its smali samp'le properties are suspect, in particular, it is



biased for finite samples and trle magnitude of this bias is inversely

related to sample size (cf. Gross ana Clark (1975)). Recently, Miller

(1983) showed that the asymptotic efficiencies cf the Kapian-Meier

product-limit estimator, relative to the maximum likelihood estimator of a

parametric survival function, are low when the censoring proportions are

nigh or for surviving fractions that are close to zero. For low surviving

fractions the variance of the Kapian-Meier estimator is 'large and any drop

in efficiency represents a real loss of accurancy. Thus, Miller concludes

that Kparametric modelling should be considered as a means of increasing

the precision in the estimation of small tail probabilities." In

addition, the Kaplan-Meier estimator's performance is suspect for small

samples as noted by Geurts (1985), for nonproportional hazaro rate

censoring, and by Chen, HoVianaer, and Langberg (1982) who state that, tor

U proportional hezard censoring, 'for small samples the Kaplan-Meler

estimator is biased ana non-negligibly so under heavy censoring at median

to low values of the survival function."

£1 It the underlying parametric survival distribution is xnorn, then

parametric maximum likelihood methods are preferred. However, in reality,

one rarely has this Wnowleage available. This approach assumes a

plausible parametric model and estimation is carried out by the method of

maximum likelirood (c.f. Neison (1982) or Bain (1978)). Typica' models

used are the exponential (McCool (1974)), the Weibull (Bain and Antle

(1970)), the normal and "log normal (Harter and Moore (1965)), the gamma

(Engelhardt and Bain (1978)), the log-logistic (Bain, Eastman and

Engelhardt (1973)), the Pareto (Proschan (1963)), and the exponential

power distribution (Smith and Bain (1975)). In light of the fact that it

is often difficult to distinguish netween the candidate distributions

2



(cf. SBin and Englehardt (1980), Sixwadi and Quesenberry (1982), Kent and

(uesenberry (1982)) the investigator may very well choose the incorrect

distribution. If th~e wrong model is cnosen, then we wtow tne parametric

maximum likelihood method will lead to asymptotically biased resuits and

will perhaps be quite inappropriate. This problem of misspecification -

bias is perhaps the largest concern in using this method.

kecently, Moeschoerger and Klein (1985) nave described a method for

improving the product-limit estimator's performance when the data are

censored at some fixed time point. The approach involved estimating the

survival function beyond the last death by an appropriately chosen

parametric function. In this paper we present an extension of this method

to randomly censored data. The proposed estimator treats the uncensored

oCservations ncnparametrical'iy and uses a parametric mode.l only tor the

censored observations. This new estimator retains most of the

distribution-tree properties of Kaplan-Meier and, yet. allows one to

estimate the function with reasonable accuracy in the tails. In the next

section the motivation and construction of tne proposed estimator -is

discussed. In Section 3 properties of the estimator, when the correct

parametric model is chosen, are presented. Results of a Monte Carlo

robustness study which compares the proposed estimator with the

Kaplan-Mier approacn, a smoothed Kaplan-fier approach, and ther maximum

likelihood approach are presented in Section 4. Finally, an exampie of

estimating the survival distribution of transplant patients enrolled in

The Ohio State University Bone Marrow rranspiant Program is discussed in

Sect on 5.

3
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2. CONSTRUCTICN OF THE ESTIMATOR

For the jth Individual under observation or on test, let X denote

the potential time to occurrence of the event of interest and let Y

denote the potential time to censoring, j = 1..., n. In this discussion

m we shall make the common assumption that X Yj are independent with

survival functions F(,) and G(-). respectively. We observe T :

minimum (X JY ) and J = I if X _< Yz (a death) and 6 = 0 if Xj > Y

(a censored observation). COur goal is to estimate F(x) - P [X > x).

Suppose, that oases on a preliminary graphical analysis of the data

(cf. Elandt-Jovison and Johnson (1980), Nelson (1982)) or basec on a

theoretical model of the disease process, a plausib'le model for F(x)

is se lected to be S(xlG). where 8 is a vector of unknown parameters.

Let 9 be a consistent estimator of 0 based on the censored

sample (T ), j = I .... n.

The proposed estimator is constructed by analogy to the complete clata

prob'lem where a natural estimator of F(x) is the proportion of

(XJY.) pairs with X. > x. In the censored data problem we observeJ

points along thie line X = Y = T along with a ray of possible va'lues of the

unooserveole coordinate (see Figure 1). For those pairs £Tj, 8a)

with T. > x (rays a and b in Figure I) we are sure that theJ

corresponding X is greater than x. For pairs kT j ) with T _ x

and 6 = 1 (ray c) in Figure 1 we are positive that X is less than or

equal to x. When T < x and 6. - 0 (ray d In Figure 1) we can not

determine with certainty if the true unouservable X is greater than

x or not. In this case an estimate of tre chance of the true X being

greater than x, in light of tre ooservable information (T j, 6 J, is

P(Xj>xJTj = r, 8JO) = P(X >xJX >Tj, Yj=T ) which,

4 .



using the assumed parametric model S(.IG) for F, is

S(xIG)/S(T 1I1). This suggests the following estimator:

n
F(x) = E *. (xIS([._))/n (1)

j=l

1 if T. >x, 6. = 0 or 1

where (xIS(.I8)) = 0 if T < x, 6. = 1 (2)

{S((I.!)/S(T I.!) if T SX*
, slilSC~lilif Tj < x. 6 = 0

3. PROPERTIES OF THE ESTIM4ATOR WH1EN THE MO.DEL.IS CORRECT

3 ,,l . ..... .. . .. ... ...... .... . .. . .. .. ..... ...T . .. ...... ,. ... .... .N ... ............ .- .. .... ... .... .. ... . R... .. ... . -

In this section we assume, up to the unknown parameter 0, that

S(x) = F(x) fur all x. Before deriving properties of F (x), in

this case, we present an alternate expression for F(x). Let x(A)

denote the indicator function of the event A and define

n n
Qn(W = Z x(Tj>x)/n and Qon (X) = Z x(Tj < x. 6j O)/n.

j=1 j=1

Then one can show that

X
F x) = Qn(X) + fo S(xl_!) d Qon(u). (3)

S(ul e)

This represenration allows us to prove the following theorem (proof in the

Appendix).

5



Troorem 1. Under the ranoom censoring model with X, Y inaependent

3 and S(x19) - F(x). Fix) - F(x) uniformly in x with probability

one if 9 -. 9 with probability one.

The representation (A.4) in the Appendix allows us to prove, by

arguments very closely related to those in Breslow and Crowley (1974), theam

fol' owing weak convergence result.

Theorem 2. Assume the indepenaent random censoring model with

S(xIj) - P(x). if 4n 9 Is a consistent estimator of 9

which converges in distribution to a normal ranoom variable then

4n (F(xj - F(x)) converges weakly to a Gaussian process with

mean 0.

While the proof (w tich we outline in the Appendix) of the above resuit

is straignt-torward, evaluation of the limicing covariance is difficu*it,

especially for estimators of e obtained by iterative techniques, since

this covariance involves tre limiting covariance of

1/2 ' /2
(n (Qnix)-Q(x)). n (8-0)) and

(n/(Qont-Qot)). n1/2 0-0)). However in some special
(on~t-." n"(

cases this limiting covariance can De obtained. One such special case is

given below.

Corol ar I. X i and YI are independent exponential random

variables with hazard rates A, $ respectively, and S(xI9'

expk-x/9) in (1) and 9 = ET /d where d is the observed

numoer of deaths (8 Is the maximum likelihood estimator of

9=1/A). then

6



I I EUI I I I I I IhII hE - UI I I . ,.

Z (x) = 4n(F(x) -exp(-x/e)) - Gaussian process with mean 0n

(2 A2x2+Ax-2(1-exp(-Ax)) 2)exp(-2Ax) if A = (

and V(Z(x)) =

A A(exp-(,,+9)x)-exp(-2Ax)) (4)

I. (A - (3)

+ 2( +_) x -(1-exp(-Ox)) 2)exp(-2Ax) if A

The details of the proof of this corollary may also be found in the

Appendix.

From Kaplan and Meier (1958) we note that in the exponential case the

asymptotic variance of the product limit estimator is

Aexp(-2Ax) (exp((A+O))x)-1)/(A+O) (5)

which is always greater than (4). Figure 2 shows a plot of the asymptotic

relative efficiency ((5)/(4)) as a function of the censoring fraction

p = 0/(A + 0) for A=1, 0 < p < .5 at the 10th, 50th and 90th

percentile of the survival distribution. Note from this figure that the

relative efficiency of our proposed estimator improves with increased

censoring and increasing time. While this result is true for the

exponential case our Monte Carlo study presented in the next section seems

to indicate it is true for the Weibull case as well.

4. MNTE CARLO.ROBUSTNESS STUDY

To study the performances of our estimator when the incorrect

parametric form is chosen for S, a Monte Carlo study was performed. The

study consisted of sinulating 1,000 samples of size 25 or 50 with 10%, 30%

7



or 50% censoring from the following distributions: (In each case we fixed

the moan life at I to make comparisons easier.)

1. E: Exponential;

2. W(a): Weibull with S(t) - exp(-Pt );

3. G(a): Gamma with probability density function

f(t) a At a exp(-At)/r(s);

4. LN(s): Log normal with second momenwt equal to the second moment

of a Wibull (a.0);

S. N(a): Normal with mean 1 and standard deviation a;

6. EP(f): Exponential power distribution (Smith A Bain (1975)) with

S(t) = exp(!-exp((t/a)o)

7. GOM (y): Gomertz with S(t) - exp (P(1-exp(rt))/rJ. P. T. t > o;

8. P(a): Pareto with S(t)- AOt)*

9. 8r(p): A bathtub shaped hazard distribution (Glaser k1980)) which is a

U ~mixture oi an exponential With probability (1-p) and a gamma(3A

with probability p; &-nd

10. LL (A): Log logistic with S(t) =(l 4+TtO)
1 , ~*r> p o.

3 Censoring distributions were the exponential for all distributions. In

addition, pr'oportional1 hazards censoring was ussa for the W'(a) and

EP($). The distributions selected contain a variety of shapes for the

hazard rate: decreasing hazard rates for the W(a), a < 1, G(a),

a<1. P(a); constant hazard rates for E; increasing hazard rates for

the W(a), a > 1. G(a). a >1. EP($J. 0 >1; and U shaped hazard

rates for the 8T(p). EP($j. ft < 1.

Table I summwarizes the resulits of the study by reporting the observed

ratio of the mean squared error of the product-limit estimator to our

suggested estimator based on either the exponential or Weibuill



dim:tribution chioice f-or S. F-or, both mordekis. pcaratierers were est imatedl by

the Method)( of maximum I ikel ihoodX. in thi; tab'le .- va-lue ir'eater thanI

implies thiat the product-lim-it estimator had a ldruer, i'-acri :3qjuareJ er'rnr.

Several.3 conclusions cat) be drawn from toe study. Fir-st, Lne

estiifator, based on S following a veibulh distribution, always nas KSF

less tha oDr- equa'l to thiat of the or'oduct -' imnit esti lmdtor.' A s irr' i Ilanr

' SU It: he ld tru'ke ton the> bias a ltho:uar these va lies.z ar- rut snorwi). Fhese

orier'ences sem to Decomre more oranounced as t increases. T r e

pertormarice of the est imator based on S foi lowina an expxinent-ial

distribujtionw is not as clear-cut, It workS better tar those distributions

W~ha decreasing or U sha ped hazard rate, but per-i or-ms poorot, ton

increasinq razard rare djistributions e=specialIly at. Iac r. Oujr

r~~ii'I4i t on in I irL t t hi' stuOVy IL A W i'') ice tor J

when i.Ii'-re- no onv~ious rea: rr t-o choe~nti~nc -tr ion.~

Seccx(-llv. in all cases where our estimator h~ad a srnaiolem' memin sauanea

er'ror ir . Ilso had a sinia) ler variance. This suraests th;ta o-0ftS3Ct'f.3./ ?

estimator oli the variance or F(t) is the estimated variance of the

o roduct limit estimator.

In an atternot to assesis luw ouich at the2 SUCCess OT the- oroposed

es-t irmaton may be due to snmaotfling. Ak- co:r4oarecl ttne various estimators withi

-1:ipIe~ruthr 1 iKpI~-M 1- In Miror1' n ie r r~Xi 111 't th

)rL ';Vr K~ot in -M rr s OThto .r- ici-e-_, ir'okr'll ti)" i at.-

-iIreSfi(-X)th Kai'a lan-Meirn F' :,retl Irr- i-r. Ih~ Wi1bu I

ri -r l ike Iil-K-xd . e.-,ponent i-Ti scores, and WJe it)j r~ i ' o's eVra i

-1 lr vv i th 'lpercent con sorimu vem'-;us trohe M~i (it ttw i ~r Ale

I~a ar ~~'erest-iim1"to' or varioLus rywcma I distm' hmr ir()r rot size e

n-- ') ,..i t t0 i W rE'i tl rfer V F'1r A- oJne c;,i v.- t I i inp)er)V eFw' of

tI Ire V*e'io I Isco r'es e-st i mator ._Ilneam's to bi sme ri ). i - i (AI it i;t

AX 1Y 1 k U t)



As a neasure of the overdoll per'forffiance of an estimator, w(- rcrsidered

an estimator of the int:egrated mean squared error defined as

- - 2IMSE (F) = E (f (F(x) - F(x)) dx),
0

where F(x) is the true survival function. We estimate the quantity by

1000 x
ETMSE (F) =£ f (F(x) - P(X)) dx/000

j=1 o

where F(x ) = p and F .(x) is the estimator of survival on the
p .j

.th simulation. The ratio of this quantity for the Kaplan-Meier'

est irnztorr to rt,.i- of c~ r he -,Ller' propxosed -.peci fic est imaloi ,

(sm|'othed Kciplr r,-Mei*?', - ?<r.,x env-ia ML(.. W ibl I MI.F, ex ,poenrial tc;otr'r. ,

and Weibull scores) is reported in parentheses in the legend of each of

the Figures 3-7. A value greater than one implies that the estimator

under consideration perfocrnrs be-tter, on the whole, than the Kaplan-Meier"

estimator. These ratios can also be used to make other comparisons

between the various estimators. For example, we note that the Weibull MLE

and Weibull scores mthods are cons-istently better than the Kaplan-Meier

and smoothed Kaplan--Meier. ,:'Ithough there is no clear winner between the

Weibjll MIE and Weibul .;c(res methoed when the underlying survivai

distribution i; rot W-ihkl I. A lso, it can be seer, t hat t-e erxponen-t i.3i

scor-s rethod -is cnsistpntl\, bert, r than the., r-.ponential MLE. r.wever,

r irher' of thse lethods :, ,nsi;terv-ly better, than Kaplan-Meier or its

smoothed r:onm-Prpirt

10



5. EAMPLE

We illustrate the estimator using the times to death, post-transpiant

of 42 patients enrolled in The Ohio State University EBne Marrow

rranspiant Program. The data represents three years of patient accruai at

tre end of this Phase 11 trial. Censoring arises due to random entry into

the study. The data is in Table 2. There were 13 deaths so that 69% of

tre patients were still alive at study's end. The estimate of the

exponential parameter was A = 9.38x10 . The estimate of the

Wetoul'i parameters were a - .0033. .7895 which

suggests a rapidly decreasing hazard rate. This is to be expected since

graft versus host disease and other complications tend to kill patients

early. if at all.

Figure 8 is a plot of the Isaplan-Meier estimator and the new estimator

based on both a Weibull and an exponential choice of S. Notice that all

three estimators agree until the censored observations begin to appear.

For tne newly proposed estimators the jump sizes at each death is l/n

while the raplan-Meier estimator has random jump sizes 'increasing with

time.

I II
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Appendix - Proof of Theorem 1

First note that Qn (x)-Q(x)=F(x)H(x) uniformly

in x with probability one (w.p.1)

Q (x)-Q(x) =fxF(u)(-dH(u)) uniformlyQon x ) Q  )  0f

in x w.p.i; and

S(xlf) _ F(x) almost surely (a.s.).

S(uj.9) F(u)

x
Also note that F(x) = Q(x) + f F(x) dQo(u). (A.1)

P(u)

Let Y 1(X) = [Qn(x) - Q(x)], (A.2)

Y2n(x) = [Qon(x) - Qo(x)W ,

S(xjO) F(x) (A.3)

and W (x.u) = - --

S(u) F(u)

It follows that

- - xF(x)-F(x) = Yln(x) + fo Wn(x'u)dQo(u)

+fx F(x) dY2 (u)

F(u)

+ fo W (xu)dY (u). (A.4)
o n 2n

Since F(x) - F(x) is a continuous function of Y 1n(X), Y2n(x),

and Wn (x,u) in the sup norm and each of these processes converge to 0

un
uniformly, the uniform consistency of F(x) follows.



Outline of the Proof of Theorem 2:
From A.4 it follows that

x

- In(F(x)-F(x))=4nY 1 n(x)+Jo /nWn(xu u)dQ0(u)+4ny2n(x)

x x

- T(X40 'd4ny 2n(u )d(F-1 (u))+f 0 nWn(x,u)dY 2n(u) (A.5)

=An(x)+Bn(x)+Cn(x)-Dn(x)+Rn(x), say. Expanding Wn(x,u) as a function of0

in a Taylor Series about e yields

'Jn Wn (x, U) = 4/n ( OA-O)d[S 0 (XI)/S0 (ule)]/dO+op(1). (A.6)

U So '4n Wn(x,u) converges to W(x,u), a Gaussian Process in x and u. Also

4/nYl n(x) 4flY2n(x) converge weakly to a bivariate Gaussian process,

* (Y1 (x , Y2(x)). To prove limiting normality of 4n(F(x)-F(x)) note that An,

Bn, Cn and Dn all converge weakly in the supremum metric to Gaussian

processes A,B,C and 0, respectively and Rn converges a.s. to 0 in this

metric.

Evaluation of the limiting Variance of Z(x) in the Exiponential Case

(needed for Corollary 1)

First note that '/n ( -0) converges in distribution to a normal random

variable with mean 0 and variance RX+p)/X 3. By A.6 we have

nWn(x,u)= 4n ( 0-0) (x-u)exp{-.(x-u)/01/0 +o00),(A7

hence

Cov( W(x,u)1W(y,r))=X(X+3) (x-u) (y-r) exp(-XL(x+y-u-r)l (A.8)



Now by A.7

Cov( 'Jf Yin(x), Vni Wn(y,u)lwn (y-u)X2 exp(-k(y-u)lCov(Qn(x)pe).- (A.9)

To evaluate Cov(Qn(x),O) we have-

COV(Qn (x) ,O)=E[Qn(x)O]-Ef Qn(x)] E(G]

=EEOJT, >x] 0(x)- n Q(x) E[d' Y/R+)

n

={(E[TI IT, >x]+E[YTi)-n/(),.iI3) .0(x) E[d 1']
2

=(x+l1/(X+p)+(n-l1)/(X+13)- n/(X+1)).Q(x) E[d-1]

-x Q(x)Efd 1 I (A. 10)

From Mendenhall and Lehman(1 960) we note that

E[d-1 ] -)/[(-)/X1]. (A. 11)

Combiing A.9, A.1 0 and A. 11 and taking the limit as n tends to infinity

we obtain

n Cov(Yj (x), W(y,u)) = X (X +3) (y-u) x exp(-[ ()X+1) x+X(y-u)I}. (A. 12)

A similar argument is used to show that

n Cov(y 2 (x), W(y,u))=
XB~ (y- u) exp{ - X (y -u) }{-xexp{-(X+p)xl+(1-exp{-(L+3) xJ)/(?L+f3)). (A. 13)

Routine calculations yield the following (for x < )

n Cov(Yj (x),Y1 (y)) = expf -(X+13)y)- expf-R)+O3) (x+y)}, (A. 1 4)



n Cov(Y 2 (x) y2(y)) =fqfX.s-1 exp-(X.+f3)yl-;L exp-Q.+O3)xl

2

an -0 exp(-L+f3) (x+y)l] /(A+ 6) , (A. 15)

nCov(Y 1 M )y 2 (y)) = 0[- exp{-(X+13)xl + exp{-R+) (x+y)}J/ (X+a). (A. 16)

- From the representation A.5 it follows that

V(Z(x)) = V(A~x))+V(B(x))+V(C(x))+V(D(x))+2Cov(A(x) ,B(x))

+2Cov(A(x) ,C(x)) -2Cov(A(x) ,D(x))+2(Cov(B(x) ,C(x)) (A. 17)

-2Cov(B(x), D(x))-2Cov(C(x) ,D(x)).

From A. 14 we have

V(A(x)) =exp{-(X+13)x)- exp{-2()X+j)xl; (A. 18)

from A.8

x y

V(B(x))=2 Jj Cov(W(x,r),W(x,y))dQ0 (r)dQ0 (y)

=X(X+) exp(-2Xxl (exp{-OxJ+1x-1 12/132; (A. 19)

from A. 15

I V(C(x))=3R+(3-X) exp{- (X-e-1)x)-J expf-2(X43)x}]/ (A+R) 2; (A.20)

from A. 15

x y

V(D(x))=2 fI f Cov(Y 2(r),Y 2(y))X2 exp-X(-rsx-yi dr dy

22

+ (X.+f)exp{-13xl/ (f3X)-exp(-20j~x/(2f3)]/)+I3) 2 , if pt

=exp{ -2)Lx}[exp(2Xx)f4+Xx-exp(Xx}+exp(-Xx)-exp(-2Lx}/4], if 0 X



from A. 12
x

Cov(A(x) ,B(x))=10 Cov(Y 1 (x),W(x, u) dQ0(u)

-().+f3)).xexp(-(2XL+)x)[(Ox-1 ).eexp{- o~x)] /$; (A.22)-

from A. 16

Cov(A(x) ,C(x))m-O[(- exP(-()X+P)x}.exp(-2(X+P)x)]/ (A+$); (A.23)

from A. 16
x

Cov(A(x) ,D(x)) =J0COv(yl (x) ,y2(u))Xexpf-X~x-u)ldu (A.24)

=- fexp{-(X-iP)x)/(XL+P)+exp{-(2..43)x}-Xexp{-2(X+3)x/p(,+P);

from A. 13

x
Cov(B(x) ,C(x)) =I0 Cov(Y2(x) ,W(x,u))dQ0(u) (A.25)

4 exp (-Ax) (fox-1 +exp{- Ox)] (-xexpf -(;X+1)x+(1 -exp{- ()+13)x))/ (Xi-13) };
from A. 13

x y

Cov(B(x) ,D(x)). f- Jo Cov(W(x,y) ,Y2(r)) 1x exp(-X~x-y)Jexp(- (X+3) rjckdy

x y

+ J0 f000 v(W(x,r) ,Y2(y)) 13xexp(-X)xLy)exp(- (L+P)r)drdy

=exp{-2 (X+f3)x} [ X2(13x+ )/J32+X2/(a (X+13))]

+exp{- (X+f3)x)(V(X+e-1))+exp{-XxJ &j~-1) (V(X+f3))

+exp{-( 2)X+1)x)[ (px-1) XL2/(13 (X.N))+X2x2-2X2/32 )j1]



and from A.1 5
x

Cov(C(x) ,D(x)) =J0Cov(Y 2(x),Y2(u))Xexp{-X(eu))du

-pexp{-(2X+)x/(X+3) +J3exp-2(;+P3)IR(+t3)2. (A.27)

Substituting A.1I8-A-2 7 into A. 17 we obtain (4) after some very tedious

simplifications.



Table 1. Ratio of WE of product limit estimator to !4E of new estimator for various

distributions. percent censored. and percentiles of survival.

F(x l)=.I F(x .=.5 F(x )=.9

n=25 n=0 n=25 n=50 n=25 n=50

Distr. Distr.

of of Percent

De.aths Itoses censored Exp Wie Fxp Wie Fxp Wie Exp Wie Exp Wie Exp Wie

E E 10 1.01 1.01 1.01 1.01 1.05 1.04 1.05 1.04 1.22 1.18 1.22 1.18

30 1.04 1.02 1.03 1.02 1.18 1.17 1.15 1.15 2.08 1.79 1.95 1.65

50 1.09 1.06 1.09 1.05 1.33 1.29 1.29 1.28 3.85 2.96 4.34 2.74

W(1/2) E 10 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.02 1.26 1.25 1.20 1.24

30 1.00 1.00 1.00 1.00 1.05 1.08 1.03 1.06 2.10 2.34 1.20 2.55

,50 1.01 1.01 1.01 1.01 1.00 1.18 .97 1.19 5.99 5.64 3.59 7.59

W(2) E 10 1.03 1.03 1.04 1.03 1.10 1.06 1.12 1.07 1.03 1.12 .96 1.12

30 1.11 1.09 1.08 1.10 1.40 1.22 1.36 1.20 .70 1.48 .48 1.46

,50 1.21 1.17 1.13 1.19 1.63 1.38 1.51 1.36 .47 2.07 .29 1.90

W4 E 10 1.05 1.06 1.01 1.05 1.15 1.07 1.14 1.06 .85 1.10 .70 1.ON

:30 1.00 1.16 .84 1.19 1.53 1.21 1.39 1.22 .,,A 1.32 .20 1.31

50 1.02 1.34 .74 1.30 1.81 1.33 1.29 1.37 .18 1.57 .10 1.54

W(81 r 10 1.04 1.07 .95 1.06 1.17 1.06 1.15 1.06 .68 1.09 .56 1.08

30 .86 1.22 .62 1.21 1.42 1.18 1.36 1.19 .26 1.27 .14 1.25

50 .78 1.38 .51 1.39 1.59 1.28 1.14 1.31 .14 1. 55 .07 1.42

W(1/2) W(1/21 . 10 1.01 1.01 1.01 1.01 1.03 1.04 1.03 1.04 1,19 1.19 1.13 1.16 =

30 1.04 1.02 1.04 1.02 1.08 1.15 1.02 1.15 1,65 1.65 1.09 1. 65

90 1.10 1.06 1.10 1.06 1.08 1.29 1.08 1.30 2,87 2.91 1.56 2.86

W(2) W(21 10 .99 1.00 1.01 1.01 1.04 1.04 1.05 1.04 .67 1.03 .90 1.17

30 1.04 1.03 1.04 1.03 1,21 1.15 1.18 1.17 .64 1.74 .46 1.81

50 1.09 1.06 1.08 1.06 1.33 1.30 1.16 1.30 .63 2.98 .36 2.95

W(4) W(4) 10 /1.01 1.01 1.01 1.01 1.05 1.04 1.05 1.05 .68 1.20 .55 1.16

30 1.04 1.03 1.04 1.03 1.16 1.16 1.07 1.14 .27 1.73 .17 1.75

50 1.09 1.05 1.09 1.06 1.00 1.31 .73 1.28 .23 2.68 .13 2.89

W18) W(8) 10 1.01 1.00 1.01 1.01 1.05 1.04 1.03 1.04 .51 1.18 .38 1.17

30 1.04 1.02 1.04 1.02 1.05 1.15 .89 1.15 .20 1.76 .09 1.60

50 1.10 1.06 1.10 1.06 .84 1.30 .53 1.30 .17 2.91 .09 2.89

G(1/2) E 10 1.00 1.00 1.00 1.00 1.02 1.02 1.02 1.0Y3 1.24 1.20 1.23 1.21

30 1.00 1.00 1.01 1.00 1.06 1.10 1.07 1.10 2.63 1.88 1.72 1.66

50 1.01 1.01 1.01 1.01 1.09 1.24 1.00 1.22 6,78 3.37 4.00 3.45

(J(2) 10 1.03 1.02 1.03 1.02 1.09 1.05 1.07 1.05 1.13 1.12 1.06 1.13
30 1.10 1.07 1.12 1.09J 1.30 1.19 1.281 1. 19 1.23 1.51 .9'1 1.4-8

50 1.23 1.17 1.17 1.16 1.57 1.34 1.45 1.36 1.20 2.50 .76 2.15

G() E 10 1.05 1.05 1.05 1.05 1.11 1.06 1.11 1.06 1.01 1.12 .913 1.10

,Y) 1.12 1.15 1.03 1.14 1.37 1.19 1. ,35 1.18 .65 1.36 .46 1.29

50 1.24 1.27 1.10 1.28 1.43 1.26 1.38 1.32 .39 1.80 .26 1.61

G(81 r 10 1.06 1.06 1.06 1.07 1.15 1.07 1.14 1.07 .89 1.08 .78 1.06

30 1.12 1.21 .90 1.21 1.43 1.18 L.m8 1.21 .41 1.26 .25 1.20

5W) 1.23 1.45 .91 1.45 1.51 1.29 1.22 1.27 .24 1.59 .14 1.39



Thble 1 Ioxtinuel)

F(x 1= '1 Flx.5 =.5 Fix )=.9

n=25 n=50 n=25 n=W50 n=25 1=,50
Distr. Distr.

of of Percent
* Deaths Losses cewored Exp Wie Exp Wie ExP Wie Exp Wie Exp Wie Exp Wie

[B( .37} E I0 1.05 1.0M 1.03 1.07 1.12 1.06 1.13 1.071 .93 1.08 .81 1.0 4

30 1.15 1.23 .92 1.23 1.41 1.19 1,30 1.15 .45 1.18 .29 1.14

50 1.16 1.47 .91 1.48 1.40 1.18 1.06 1.15 .27 1.39 .15 1.31
L(J.Sl E 10 1.05 1.05 1.06 1.06 1.10 1.0(5 1.09 1.05 1.03 1.10 .9"2 1.06

30 1.16 1.18 1.08 1.18 1.36 1.17 1.27 1.14 .68 1.23 .49 1.23

50 1.30 1.37 1.13 1.40 1.47 1.22 1,27 1.25 .46 1.68 .26 1.47
1LN(.61) E 10 1.05 1.04 1.04 1.04 1.09 1.05 1.09 1.05 1.10 1.09 1.05 1.07

30 1.13 1.16 1.10 1.16 1.33 1.18 1.27 1.17 .97 1.34 .75 1.28

50 1.29 1.31 1.26 1.33 1.49 1.23 1.26 1.22 .69 1.74 .41 1.51

EP( .25) E 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.23 1.25 1.04 1.18

30 1.00 1.00 1.00 1.00 1.02 1.04 1.02 1.04 1.79 2.18 1.07 2.28

50 1.00 1.00 1.00 1.00 .88 1.18 .77 1.16 8.11 4.71 6.56 5.80

EP 5) E 10 1.00 1.00 1.00 1,00 1.02 1.03 1.02 1.03 1.32 1.27 1.26 1.22

,30 1.00 1.00 1.01 1.00 1.06 1.10 1,08 1.12 2.53 1.77 2.00 1.60
50 1.01 1.01 1.02 1. 01 1.10 1.25 1.05 1.26 7.26 2.70 4.71 2.47

F'(I E 10 1 0t 1.01 1.02 1.01 1.07 1. 05 1.(6 1.(f) 1.17 1.19 1.09 1.16

30 1.06 1.03 1.06 1.03 1. 27 1.20 1.26 1.22 1.25 1.65 1.02 1.53
50 1.12 1.07 1.13 1.06 1.53 1.35 1.57 1.43 1.35 1.94 .06 1.77

EP8 E 10 1.03 1.07 .95 1.06 1.17 1.07 1.17 1.06 .58 1.13 .46 1.11

,30 .80 1.21 .52 1.18 1.55 1.16 1.32 1.19 .22 1.37 .11 1.39

50 .79 1.39 .45 1.35 1.46 1.23 .95 1.30 .10 1.77 .06 1.70
EPL 25) EP(.25) 10 1.01 1.01 1.01 1.01 1.03 1.04 1.01 1.05 1.17 1.22 1.10 1.19

R 30 1.04 1.02 1.03 1.02 1.00 1.15 .92 1.15 1.47 1.66 .98 1.51

50 1.09 1.04 1.10 1.04 .90 1.32 .84 1.26 2.77 2.07 1.41 1.9,
EP(.5} EP(.5) 10 1.01 1.01 1.01 1.01 1.04 1.05 1.03 1.03 1.23 1.20 1.23 1.19

30 1.04 1.02 1.04 1.02 1.12 1.17 1.11 1.14 2.17 1.66 1.71 1.58
50 1.09 1.04 1.10 1.05 1.16 1.32 1.13 1.34 4.89 2.05 3.19 1.91

EP(1J EP(I1 10 1.01 1.01 1.01 1.01 1.06 1.05 1.05 1.04 1.20 1.21 1.12 1.20
30 1.04 1.02 1.04 1.02 1.20 1.16 1.18 1.15 1.15 1.57 .98 1.56

50 1.08 1.04 1.08 1.04 1.37 1.32 1.36 1.33 1.47 2.29 1.0M 1.86

EP(8) EP(8) 10 1.01 1.01 1.01 1.01 1.06 1.03 1.02 1.04 .53 1.22 .,8 1.20
30 1.04 1.02 1.04 1.02 1.06 1.16 ..8 1.15 .17 1.5.4 .10 1.57
50 1.11 1.(; 1.(y) 1.0W .75 1.29 .53 1.218 .15 2.05 .08; 1.21191

I.(21 E 10 1.02 1.02 1 .02 1.02 1.05 1.04 1.05 1.04 1.11 1.0f5 1.11 1. .K;
30 1.10 1.08 1.0Y) 1.08 1.22 1.15 1.17 1.12 1.59 1 .,36 1.48 1.28

50 1.23 1.19 1.20 1.17 1.46 1.28 1.34 1.29 2.23 2.26 2.01 1.87

L(31 10 1.04 1.04 1.04 1.04 1.08 1.05 1. 1( 1. 1.03 1.03 1.02 1.0"1
30 1.13 1.15 1.08 1,15 1.32 1,16 1.27 1.16 .82 1.19 .59 1.08

50 1.26 1.31 1.09 1.28 1.39 1.21 1.33 1.,31 .57 1.75 .39 1.40

LL(4) 10 1.07 1.06 1.02 1.05 1.10 1.06 1.11 1.06 .92 1.01 .85 1.00
30 1.08 1.20 1.03 1.20. 1.43 1.21 1.27 1.14 .57 1.15 .35 1.00
50 1.17 1.,3 .92 1.37 1.51 1.25 1.15 1.17 .34 1.48 .19 1.15
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F~x 1= '  F~x .)=.5 Fix )=.9
.5 .. 9

n=25 n-W n=25 ii50 n=25 n=50
Distr. Distr.

of of Percent
Deaths [AIses censored Exp Wie Exp Wie Exp Wie Exp Wie Exp Wie ExP Wie -

P(2) E 10 1.01 1.00 1.01 1.00 1.02 1.02 1.03 1.03 1.24 1.17 1.19 1.13
30 1.03 1.02 1.03 1.02 1.11 1.11 1.12 1.13 2.21 1.84 1.74 1.71
50 1.07 1.04 1.07 1.05 1.23 1.23 1.24 1.26 5.79 4.14 3.86 3.93

P(3) E 10 1.01 1.01 1.01 1.01 1.03 1.03 1.04 1.04 1.25 1.17 1.21 1.15
30 1.03 1.02 1.03 1.02 1.13 1.13 1.13 1.14 2.26 1.78 2.02 1.73
50 1.07 1.04 1.08 1.05 1.25 1.24 1.27 1.27 6.04 3.67 4.85 3.74

P(51 E 10 1.01 1.01 1.01 1.01 1.04 1.03 1.04 1.04 1.26 1.19 1.22 1.16
30 1.03 1.02 1.04 1.02 1.15 1.14 1.15 1.15 2.18 1.72 2.11 1.73
50 1.07 1.04 1.08 1.05 1.28 1.25 1.30 1.30 5.78 3.41 5.60 3.40

IIT(.15) E 10 1.01 1.01 1.01 1.01 1.04 1.03 1.04 1.04 1.26 1.20 1.24 1.19
30 1.94 1.03 1.04 1.02 1.14 1.14 1.14 1.14 2.06 1.75 2.10 1.76
540 1.09 1,06 1.08 1.05 1.29 1.27 1.27 1.28 4.(5 3.32 4.98 3.14

r (.25) E 10 1.01 1. M 1.01 1.01 1.04 1.04 1.05 1.04 1.24 1.19 1.24 1.19
3) 1.03 1.02 1.04 1.02 1.15 1.14 1.15 1.15 2.20 1.83 2.23 1.83
!50 108 1.05 1.0 1.05 1.31 1.29 I. 1.30 4.33 3.00 5.33 3.42

IMM40) ' 10 1.01 1.01 1.01 1.01 1 .(5- 1.04 1.05 1.04 1.27 1.23 1.23 1.19
30 1.04 1.02 1.04 1.02 1.16 1.15 1.16 1.15 1.94 1.75' 1.97 1.74 -
50 1.08 1.05 1.08 1.05 1.34 1.30 1.32 1.32 3.48 2.69 3.64 2.59

BT (.6) E 10 1.01 1.01 1.01 1.01 1.06 1.05 1.06 1.05 1.22 1.19 1.18 1.17
30 1.04 1.02 1.04 1.02 1.23 1.19 1.21 1.18 1.55 1.58 1.34 1.48
50 1.09 1.05 1.10 1.05 '.48 1.-36 1.40 1.36 1.91 1.99 1.66 1.86

(XIN! .5) E 10 1.02 1.01 1.02 1.01 1.07 1.05 1.07 1.05 1.17 1.18 1.16 1.19
30 1.05 1.03 1.05 1.03 1.25 1.19 1.23 1.19 1.33 1.58 1.22 1.58
50 1.11 1.07 1.11 1.06 1.45 1.34 1.45 1.37 1.69 2.30 1.11 1.86

CI( H E 10 1.02 1.01 1.02 1.01 1.09 1.06 1.09 1.06 1.09 1.18 .99 1.17
30 1.06 1.03 1.06 1.03 1.31 1.21 1.28 1.18 .91 1.52 .67 1.50
50 1.14 1.07 1.12 1.07 1.66 1.43 1.63 1.46 .76 1.74 .47 1.54

(I(2) E 10 1.04 1.02 1.02 1.01 1.15 1.09 1.15 1.09 .92 1.21 .75 1.19
30 I 1.07 1.04 1.07 1.03 1.43 1.22 1.46 1.26 .52 1.52 .29 1.34
50 1.14 1.08 1.07 1.07 1.80 1.38 1.76 1.44 .33 1.63 .18 1.32

NI .05) 10 .97 1.12 .86 1.11 1.18 1.08 1.17 1.08 .58 1.05 .39 1.03
30 .70 1.36 .45 1 .,1 1.41 1.21 1.20 1.22 .16 1.13 .09 1 .0
7,0 .66 1.71 .36 1.50 1.23 1.29 .82i 1.35 .()L 1.22 .(q 1.11

N(. 10) 10 1.00 1.10 .93 1.10 1.18 1.07 1.14 1.0i .64 1.06 .47 1.04
3 .78 1.35 .56 1.34 1.49 1.18 1.15 1.16 .20 1.15 .11 1.12
50 .72 1.65 .41 1.60 1.38 1.27 .87 1.27 .11 1.35 .06 1.1.-i

N(.15) 10 1.02 1.09 .90 1.08 1.18 1.07 1.17 1.08 .67 1.06 .53 1.07

30 .88 1.27 .60 1.32 1.50 1.18 1.30 1.21 .24 1.21 .12 1.15
50 .86 1.55 .51 1.53 1.41 1.31 1.01 1.28 .12 1.39 .06 1.24

=NS



Table 2. Times to death (in days post-transplant) of patients in OSU Bone

Narrow Transplant Program (+ denotes still alive).

2. 27, 32+. 43+. 50. 55+, 62. 82+, 102+, 103+. 122, 145+, 148, 158, 162.

194+. 250+, 251. 267+, 276, 284+, 292+. 319+, 326+, 346+. 365+, 404+. 417,

418, 423+. 438+, 491. 584+. 595+, 613+. 642+, 649+, 693+, 707+, 746+,

755+, 826+
E
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Figure 1

Four possible rays in the censored data situation.
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Figure 2.

Asymptotic Relative Efficiency (A.R.E.) as a fuaiction
of the censoring fraction at the 10th_(0), 50th (A),

and 90th ()percentile of F(x).
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Figure 3.

Relative MSE of Estimators of Survival for the
Weibull Distribution with 50% Censoring, n=50, a=0.5
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Figure 4.

Relative HSE of Estimators of Survival for the

Exponential Power Distribution with 50% Censoring, n=50, =0.5
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Figure 5.

Relative MSE of Estimators of Survival for the
Log Normal Distribution with 50% Censoring, n=50, S .6096
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Figure 6.

Relative KSE of Estimators of Survival for the
Gompertz Distribution with S0% Censoring. n=50, y=1.0
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Figure 7.

Rel1ative KSE of Estimators of Survival for the

Log Logistic Distribution with 502 Censoring. n=50, 6=3-0
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Figure 8.

Estimated survival function for Kaplan-Meer 
and

proposed estimates for OSU transplant data
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BWARIATE MODELS WITH A RANDOM ENVIRONMENTAL FACTOR

Sukhoon Lee John P. Klein

Temple University The Ohio State University
Philadelphia, PA USA Columbus, OH USA

1. INTRODUCTION

Consider a two component series system functioning in some environment. A common,
though untestable, assumption is that the two components of the system function

independently. If this assumption is incorrectly made predictions of the system reliability may
be very poor (c.f. Klein and Moeschberger (1984)). Several authors have proposed models for
dependence based on the assumption that the effect of exposure of a system to the environment

is to simultaneously degrade (or improve) all components in the system (Hutchinson(198 1),
Bagchi and Samanta(1984), Lindley and Singpurwalla(1984), Oakes(1982), and
Hougaard(1985)). In Section 2 we propose a general model for a system affected by a random

environment and describe its properties. In Section 3 we restrict the model to one where the
environmental effect is modeled by a gamma distribution and study its properties. Fiually in

Section 4, we conclude with an example.

2. GENERAL MODEL
We assume that under controlled conditions, as one may encounter in the testing or design

stage of development, the times to failure of the two components, to be linked in a system, are

Xo and Yo with survival functions Fo , Go, respectively. The two components are linked into a

system and are put into operation under operating conditions. Suppose that under such
conditions the effect of the environment is to degrade or improve each component by the same
random amount, Z (with some distribution function H ), which changes the marginal survival

functions of the two components to FoZ and GoZ. A value of Z less than one means that

component reliabilities are simultaneously improved, while a value of Z greater than one

implies a joint degradation. We assume that the two components in a system under fixed
conditions (i.e. given Z) function independently. The resulting joint survival function of the

two components' lifetimes, (X,Y) in the operating environment is F(x,y)=E (F 0 Z(x).GoZ(y)).

* Denoting the cummulative hazard functions of Xo , Yo by Qxo(') and Qyo('), we have

F(x,y) = E(exp{-(Qxo(x)+Qyo(y))Z}]. (2.1)
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Now we will discuss the properties of the model in terms of it's deptndence structure, and

reliability.

Property 1. The random variables X, Y of the lifetimes of the two components in a
system under the operating environment are totally positive of order 2 dependent.

(See Barlow and Proschan (1981) for a discussion of TP2 dependence.)

proof) Let fo(x) and go(y) be the density function of Xo and Yo respectively and f(x,y) be

the joint density funtion of (X,Y). Define qxo(x) = fo(x) / Fo(x). Then

f(x,y)_E{Z2 FoZ - I(x)GoZ- I(y)fo(x)go(y)} =qxo(x)qyo(y)fz2FoZ(x)GoZ(y)dH(z). So

f(x 1 ,y 1)'f(x2 ,y2 ) = J Jqxo(X 1)qyo(y 1) qxo(x2)qyo(y2) u2 v2FoU(xi)Gou(y1).
u>v Fov(x2 )Gov(y2 )dH(u)dH(v)

+ f fqxo(x1)qyo(Y1) qxo(x2)qyo(y 2 ) u2 v2FoU(xl)GoU(y ) •
v>u Fov(x2 )Gov(y2 )dH(u)dH(v)

=f fqxo(x 1)qyo(y 1) qxo(x2)qyo(Y2) u2 v2 FoU(x 1)GoU(y 1)
u>v Fov(x2 )Gov(y2 )dH(u)dH(v)

+ f fqxo(xl)qyo(y1) qxo(x2)qyo(y2) u2 v2FoV(x)GoV(yI)
u>v FoU(x2 )GoU(y 2 )dH(u)dH(v).

In the same manner, the other product f(xi,y 2 ) -f(x2 ,y1) also can be written as integrals over

the region u>v and f(x1 ,y1 ) • f(x2 ,y2 ) - f(xl,y 2 ) * f(x2 ,y1) can be written as

f fu2 v2 [ qxo(x1 ) qxo(x 2 ) FoU(x 1 ) Fov(x 2) - qxo(x1 ) qxo(x2 )Fov (x1 ) Fou(x 2 )]"

u>v [ qyo(y1) qyo(Y2) GoU(y 1 ) Gov(y 2 )" qyo(yl) qyo(y2)Gov(y 1 ) Gou(y 2 )] dH(u)dH(v)

The blanketed terms in the integrand are always nonnegative over the region u>v since

Fov(x) / FoU(x) = exp [ - (v - u) Qxo(x) I is increasing in x for any Fo . Hence

f(xl,y 1) • f(x2 ,y2 ) - f(xl,y 2 ) ' f(x2 ,Y1) z 0 for all xI<x2 , yl < Y2 , which leads to TP2

dependence. Q.E.D.
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Since TP2 dependence implies that X is stochastically increasing in Y we obtain the

U following property.
Property 2. Under the same setting as in Property 1, the conditional hazard rates q(x I Y=y)

and q(x IY > y) are decreasing in y.

The property implies that the longer one component functions, the more reliable the other

component in the system becomes.

From a different point of view we derive an inequality in terms of the conditional hazard

rates which reflects the positive dependence of the model.

Property 3. Under the same setting as in Property 1, the model satisfies

q(x IY = y) > q(x I Y > y).

Proof) Let G 1 (y) be the marginal survival function of y in the system exposed to the

operating environment. Then F(x I Y=y) = P(X > x tY = y)

= (aF(x, y) /ay)/ ( dG I(y)/dy) = E(Z'FoZ(x)-GoZ(y))/ E(Z'GoZ(y)).

Also F(x JY > y) = P(X > x I Y > y) = E( FoZ(x)-GoZ(y))/ E(GoZ(y)).

Hence, we obtain the following inequality,

q(x IY = y) E(Z 2.FoZ(x).GoZ(y)) E(FoZ(x)'GoZ(y))

-. 1, (2.2)

q(x IY > y) E2 (Z'FoZ(x).GoZ(y))

since q(x IY=y) = a I- logF(xlY=y)] / ax

= E(Z2 FoZ- l(x)-GoZ(y).f 0 (x)) / E(ZFoZ(x).GoZ(y))

= qxo(x)E(Z 2FoZ(x).GoZ(y)) / E(ZFoZ(x).GoZ(y)), and

q(xly>y) = qxo(x)E(Z'FoZ(x)'GoZ(y)) / E(FoZ(x)'GoZ(y)).

The inequality in (2.2) is obtained by Cauchy -Schwarz inequality and equality holds if and
only if the random variable Z is constant. Q.E.D.

We note that this inequality should be contrasted with the notion of the quasi
independence, which is defined by q(x IY = y) = q(x IY > y). This is the necessary and

sufficient condition that the marginal distributions under the dependent model can be recovered
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from the minimum of X, Y and the knowledge of which component caused the system to fail.

In that case there exists a set of independent random variables which yields the same minimum

and indicater of system failure as the dependent system. Futhermore these equivalent

independent random variables have the same marginals as the dependent system (See Basu and

Klein (1982)).

Up to now several properties have been explored in terms of the dependence structure

induced by a random environment. Next we investigate the effects of the random environment

on system reliability by comparing the reliability function with and without the random

environmental effect. Conventional reliabilty theory commonly uses the knowledge of the

component lifetimes and an assumption of independent component lifetimes in order to

compute the system life distribution. In other words an investigator modeling system life,
based on component information, may predict the reliability of the system, in our setting, with

knowledge of Fo(x) and Go(y) only by Ros(t) = Fo(t)'Go(t). The following theorem indicates

how the two reliabilities are different in a series system.
Property 4. Suppose a two component system is serial, i.e., the system failsas soon as any

one of the two components fails. Let Rs(t) and Ros(t) denote the system reliabili-

ties for the cases of a random environment and of a fixed environment.

i) If E(Z)< 1 then Rs(t) >..Ros(t) for all t

ii) If E(Z) > l and P(Z < 1) = 0 then Rs(t) < Ros(t) for all t.

iii) If E(Z) >1 and P(Z > 1) > 0 then there exists a t * such that
t**

Rs(t) < Ros(t) for all t < t* and Rs(t) > Ros(t) for all t > t*•

Statement (iii) implies that even if the average operating environment is more severe than the

controlled one, but there is a chance of better environment perhaps due to highly cautious
maintenance, careful users, or effective usage, the system under a random environment

becomes more reliable beyond a certain time.

Proof) The ratio of reliabilities for variable to fixed environment Ros(t)/Rs(t) is

E{exp(-Qo(t)Z)} /exp{-Qo(t)} where Qo(t) =Qxo(t)+Qyo(t).

In the case of E(Z) < 1, E{exp(-Qo(t)Z)}> exp{-Qo(t)'E(Z)} by Jensen's inequality so i)

follows immediately. Note that the equality holds if and only if Z=-1 with probability l.The

statement (ii) follows by noting that E{exp(-Qo(t)Z)} f exp(-Qo(t)z)dH(z) < exp(-Qo(t)z)

JdH(z) = exp{-Qo(t)}.
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To prove (iii), let r(t) =Elexp(-Q 0 (Q)Z)l exp{-Q0 (t)}.

Then r'(t)=q0 (t)E{ exp(-Q0 (t)Z) lexp{ -Q0 (t) }( 1-s(t))

where s(t) = E{Zexp(-Q 0 (t)Z)}/ E~exp(-Qo(t)Z)} and qo(t)=do(t)/dt.

Noting that s(0)=E(Z) since Q0 (0) = 0, E(Z)> I implies that r'(0) < 0. Since r(t) is decreasing at

* t = 0 and r(0) =I this implies that r(t) < 1 for t in a neighborhood of t=0. To complete the

proof it suffices to show that r(t) is increasing beyond a certain point, which is true if r'(t) is

positive beyond that point. We claim s(t) is decreasing in t and s(t) < 1 for large t under the

* given condition.Let us express s(t) as

E{Z exp(-Q0(t)Z)l}4pzTtd

Elexp(-Q0 (t)Z) }

exp(-Q0 (t)z)d-(z) ad cQ() x(Q(~~.~)
where p(zlT>t) dz CQ~) n (ot)=fep-otzd~)

Noting that p(zIT>t) is a density function, s(t) can be expressed in terms of the conditional

expection E(Z IT > t). Looking at the density p(zlT>t) we see that

p(zlT>t 2)/ p(zJT>t1 ) = c(%(t 2 ))/ c(Q 0(tl))- exp{( Q0 (tl) - Qo(t2 ) )z} for t1 <t 2

is decreasing in z. Then it is an immnediate consequence of the following lemma, due to

S Lehmann that E(ZI T > t) is decreasing in t

Lemma (Lehmann(1959),pg74) Let po(x) be a family of densities on the real line with

monotone likelihood ratio in x. If xy(x) is nondecreasing function of x, then E6 (XV(x)) is a

nondecreasing function of 0.

Let 0 = lit. Denote p0 (z) = P(zIT>t). Then p8 (z) has monotone likelihood ratio in z. So E(Z)

is nondecreasing in 0, which implies that E(ZIT>t) is decreasing in t. Now it remains to be

shown that s(t) < I for some t > 0. Let p(z)=(z-1I)exp(-Q 0 (t)-z) and note that p(O) = -1 and p(z)

has maximum [Q0(t){exp(Q0 (t)s-1)}fl-1 at zo=(l -Q(t))%1o I(t) and p(z) is increasing for z <

zoand decreasing z > zo. Suppose P(Z < 1) = E > O.For any 0 < 8 < F-, there exists a closed
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interval [u,v] contained in (0, 1) such that A(u,v) = H(v"'- H(u) > S. Then E(Zexp(-Qo(t)Z)) -

E(exp(-Qo(t)Z))

= Jp(z)dH(z) + Sop(z)dH(z)< JVp(z)dH(z) +[ Qo(t)'exp(l+Qo(t))]'l'A(1,- )

<p(v)-A(u,v)+[Qo(t)-exp(1 +Qo(t))]- -A(1,o)<(v- 1) exp(- Qo(t)v) 5+[ Qo(t)-exp( 1 +Qo(t))]- 1 .

Since the last term is negative if and only if (l-v) 5> [e.Qo(t)'exp{(l-v)Qo(t))] there exists a t

such that E(Zexp(-Qo(t)Z)) - E(exp(-Qo(t)Z)) < 0, that is, s(t*) < 1. Q.E.D.

This property implies that methods which are based only on components' information

(assuming independence) over estimate the reliability at an earlier stage ignoring potential

failures from a harsh environment which may be encountered in the beginning stage under the

operating condition, while under estimating the possible gains in reliability at later stage from a

better environment which meets requirement of each system's susceptibility.
The proof of the property yielded an interesting result about the conditional distribution

H( ) of a random environmental factor.
Property 5. The mean and variance of a random environmental factor Z among system which

survive to a given time t, E(Z I T > t) and V(Z T > t) are decreasing in t.

This property indicates that average environmental factor of the surviving systems declines

with time since the systems under harsher environments tend to fail fust. Also it is noted that

the variability of environmental factor of the surviving systems is reduced with time.
We conclude this section by mentioning an curious phenomenon of the hazard rate. In the

series system problem the life system distribution after incorporating a random environmental

factor has hazard rate qs(t) = qo(t)- E(Zexp(-Qo(t)Z)) / E(exp(-Qo(t)Z))..However

E(Zexp(-Qo(t)Z)) / E(exp(-Qo(t)Z)) has been shown to be decreasing in L Thus the lifetime

distribution can often have a decreasing hazard rate which the variable environment may cause
while the component hazard rates are not decreasing. One plausible explanation is that the

population is subject to an early heavy selection of systems under most severe environments.

This should be contrasted to reliability of system operating in a fixed environment where the

systems may have a variety of shapes for the hazard rates.
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3. THE MODEL WITH A GAMMA ENVIORNMENTAL FACTOR

In this section, we assume that the random environmental factor Z follows a gamma

distribution with density function is h(z) = {F(a)}'l13Iaexp(-z/)za - , a > 0 3 > 0. This

distribution is chosen because it is analytically tractable, and because it is flexible in that it

allows a variety of shapes including the exponential and bell-shaped density. The joint survival

function for (X, Y) is F(x, y)= pa {3+Qxo(x)+Qyo(y)}a . (3.1)

and the marginal survival functions are F,(x) = 3a / {i3+Qxo(X)}la,

G l (y) = pa/{p3+Qyo(y)}OX.

Oakes (1982) proposed a similar model based on an extension of Clayton's (1978) model

for bivariate lifetables. His model is derived by assuming that given w, X and Y are

independent random variables with survival functions {exp(-Fokl-0(x)+1)} w and

{exp(-Gokl-0(y)+1)}w, respectively. Then assuming w has a gamma distribution with a =

1/(0-1) and 13 1 the joint survival function is F(x, y) =[ F0kl-0 (x) + Ookl' 0 (y) - 1]i /(1-0)

where Fok, and Gok are the marginal survivals and 0 > 1.

For the Oakes' model the marginals under a fixed environment (i. e. given w) depend on the

environmental parameter 0, while in our model they are free of the dependence measure a. The

reverse situation holds under the random environment.

While the two joint survival functions appear quite different the basic marginal free

structure is the same. That is both models have the same nonparametric dependence structure,

the copula introduced by Sklar (1959) and studied by Schweizer and Wolfe (1981). Here the

copula is C(u,v) = [ u-l/ + v-i/( - I ]'(, a=1/(0-1).
We list some properties of the gamma model we have obtained through the copula.

1) The probability of concordance is ((x+ 1)/(2a+ 1).

2) Since the copula C(u, v) depends only on a, only the shape parameter cc affects dependence

structure which is induced by the environment.

3) Since the copula C(u,v) is decreasing in a, and two variables are independent if and only if
0

their copula is u-v, the larger the shape parameter a is, the less the dependence is induced.

i i I I p I0
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4) As ox goes to 0 the copula converges to min(u,v) which is the copula of maximal positive

association.

5) If we consider two environments characterized by gamma distributions a < a then X, Y

under a is more positively associated than X,Y under a.

We conclude this section with the following property of our model.

Property 6. The random environmental factor for those systems for which component A has
functioned more than x time units and component B has functioned y time units

also follows a gamma distribution with same shape parameter cc and scale

parameter Qxo(x) + Qyo(Y) + 03. While for the popuiation of the systems whose

components failed at time X=x, Y=y the environmental factor follows a gamma

distribution with shape parameter ot+2 and scale parameter Qxo(x)+Qyo(Y)+3.

Property 6 indicates that the mean of the environmental factor for the population of systems
whose components are functioning at time t is a decreasing function of t. Another point to be
noted from this property is that the density of the environmental factor for the population of the

systems whose components' lifetimes have X > x, Y > y has the shape paramater oX, which is

identical to that in the unconditional density of Z. It can be interpreted that the dependence
structure between the components of all the functioning system beyond a certain time t has the
same as the dependence structure between components of a system operating at time 0.

4. EXAMPLES
As examples we consider the case when both components have a Weibull form parameters

( 1 I) and ( 712, X2 ), respectively. That is, F0 (x) = exp(- X.xr1). The Weibull

distribution, which may have increasing ( 1 > I), decreasing (1" < 1) or constant failure rate (r
= 1) has been shown experimentally to provide a reasonable fit to many different types of

survival data. (See Bain (1978)). The resulting joint reliability of the two components'

lifetimes, (X,Y) in the operating environment is F(x,y) = E[exp(-Z(Xixrll+ X2y12 )]. (4.1)
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The model described above for a general distribution of the environmental stress has a

particular dependence structure which we summarize in the following property.

Property 7. Let (X,Y) follow the model (4.1) where Z is a positive random variable
r s

with finite (- + -)th inverse moment. Then
11 T12

-r/Tl I "s/T12 -rT1 +s/M2))
E(xr yS) = X,1 X F( + r/TJ 1) F(I + sMr2) E(Z (r l  )(4.1I)

When the appropriate moments exist, we have

- I/Th
(A) E(X) = E(X 0 ) E(Z ),

(B) V(X) = E(X 0
2 ) Var (Z ') + E(Z 1)2 Var(X 0 ),

(C) Coy (X,Y) = E(X 0 ) E(Y0 ) Cov(Z , Z ) which is strictly positive.

If TI = 712 = r then the correlation between (X,Y) is

F(I+ I/-l)2 Var(Z1 1/fl)
P = Var(Z1 lTr) r(1+2/7l)+ (F(I+ 2/l) - r(l+i/ 1 )2 ) E(Z-1 1T) 2  (4.2)

In this case the correlation is bounded above by r(1+1/7l) 2 / r(1+2/Tl). Figure 1 shows the

maximal correlation as a function of T1 for Tl = (0, 10). Note that this maximal correlation is an

increasing function of il.

Exact expressions for the quantifies of interest can be computed when a particular model is

assumed for the distribution of Z. We shall consider the gamma and uniform models. For the

gamma model for Z, the joint survival function is

F(x,y) = pa' / [3+ XX + X2Y 71-cL (4.3)

which is a bivariate Burr Distribution (see Takahasi (1965)), the marginal distributions are

univariate Burr distributions with

E(X) = (XI/P3) - l/l(l+i/rll)F(a- 1/1 ) r(a), ifc a> I/f,

S
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2 /11 1 r + 2 /T1 1 4o -2 /r l1) F o + l/ r l ( (x i 'l/r 1 2 ,  if c > 2 / 1 1

Var(X) (XI/13) { -[ [ f
F (a) F(xt)

with similar expressions for E(Y), Var(Y). The covariance of (X,Y) is Cov(X,Y)

-i iml - 1 /r1 ( - 1/T 1/ 2 ) r (a -1/ 2) (a -1/ 1i2 ) ((1+ / 2 )
0-0) (X2/) F(a) r(a) I

for a > I/l 1 I + 1/712. For the gamma model, the reliability function for a bivariate series

system is given by

1"i "12

Rs(t)= (+(- 1 /13)t + (X2/P3)t )-0X, (4.4)

and for a parallel system by
"1(2 tr12 "12)

Rp(t) = (1+( xl/3)t + (1+ )-o). (1+( X/13)t + (X2/1)t )-2 (4.5)

Figure 2 is a plot of the series system reliability for X1 = 1, X2 = 2 and T11r12=1. The figure

shows the reliablity for a = 1/2, 1, 2, 4, and the independent Weibull model. In all cases, 13

1. For this figure we note that for fixed X11 )2 711, 712 ' t, the series system reliability is a

decreasing function of the shape parameter a. Figure 3 is plot of the parallel system reliability

(4.5) for the above parameters. Again, the reliability is a decreasing function of a. Also in

both the series and parallel system reliability, the shape of the reliability function is quite

different from that encountered under independence. Additional plots with other parameter

values ,which can be found in Lee(1986) show similar survival curves.

The gamma model is often a reasonable model for the environmental stress as discussed in

the previous section. However, in some cases, such as when the operating environment is

always more severe than the laboratory environment, the support of H may be restricted to

some fixed interval. A possible model for such an environmental stress is the uniform

distribution over [a,b]. For this model, the joint survival function is



F11

F(x,y) [exp (-b(X, x + X2Y ))-exp(-a( Xlx + )L2Y M) (4.6)
111 T12

(b-a)(Xlx + )L2 Y)

-1/111 (TI I- I)1111 (111-1)/111
E(X) =xI r(1+1/711) Til (b -a )/{ ( T1 1)(b-a)I if Tj 1

=Iog(b/a)/[)LI(b-a)1 if 111=1,

Var(X) =illX ) {Ir(1+2M11 1 ) i I(b - a

(b-a)

r I I/T 12 TI(b(111-1/ 111) -a(TI1- 1/1I1) )

(T11-1)2(b-a) if 11 1 # 1,2,

*2/(Xl 2ab) - log(b/ a)2/[(b-a) ;X112  if Ill= 1,

-llog(b/ a) 7

(b-a) (bl/ + a 1/)2 fT=2

* and

111T12 -111-1T12 11112-TI11- 112

r(1+/711) r (+/T 2) 1 IT2(11112 --a T)11
COV(X,Y) ={

xltfl ?1/11M1 (11112-111- 12) (b-a)

T11-1 T11-1 112-1 T12-i
fI I 1 II 12 112

111112 (b -a )(b -a )

(TI1 -1)( T12-1) (b-a)2 }fi~,121111+/1
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T1 1 -1 T1 -1

_ (1+1/Ti)r((21ll-l)/Il) log(b/a) T'12 (b -a ) 1/rj 1  1i/r

if ll q1l l/T=I _

= /( -(b -a )A
1/rfl rl(rl -) - (b-a) (M (ba) (b-a)2

i 'L2

if trll+ /1 l= 1

Ili Tli' - Tli - rli' Tli Ili' - 71i" - 7i, 7li-._ 7ji-1

=r (l+l/lij) Ti 1ii, (b Il l, -a Ii rl ji (b Ti-a ) log(b/a)

xi l/rli ( li Tlii- 71i - 71i)(b-a) M - (b-a)2

if rli 7 1ri.= 1

I I log(b/a) 2

I- if T1I = T12
= 1

(X1 X2) (ab) (b-a)2

For this model, the reliability function for a series system is

T1  2) T1 12Rs(t) = [exp(-b( XIt + X2 t r12)) "exp[-a( X1 1 + ?2 )]] (4.7)

(b-a) ..1 t + X2 t r,

and for a parallel system is

Rp(t) = [exp(-b(.lt ) -exp(-a X.Itr ) + [exp(-b .2t  ) -exp(-a 2 t 2)
-Rs(t)

(b-a) XIt (b-a) .2tT12 (4.8)

Figure 4 shows the reliability for a series system and figure 5 for a parallel system under

the uniform model for various combinations of a and b. Notice that when a = .25, b = .75,

I __ S
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which corresponds to an operating environment which is less severe than the test environment,

the system reliability is greater than that expected under independence, while when (a,b) =

(1.25, 1.75) or (1, 2), which corresponds to an environment more severe than the test

environment, the system reliability is smaller. Also when (a,b) contains 1, which corresponds

to an environment which incurs the possibility of no differential effect from that found in the

laboratory, there is little difference in the dependent and independent system reliability.
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Summary

We present some techniques for analyzing combined experiments on systems tested under field
conditions and components tested under controled conditions, under an assumed random
enviornmental stress model for series system reliability. Based on this model we discribe the
maximum likelihood estimation of model parameters as well as other estimators based on the scaled
total time on test statistic. The question of when it is advisable to perform diagnostic testing on the
failed systems to determine the failure modality in light of the excess cost of doing so is also
studied. Lastly, a study of several tests for independence based on this model is made.
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1. Introduction

Consider a p - component series system where the failure of any one of the p components
causes the system to fail. A common assumption made in analyzing such systems is that the
potential (unobservable) times to failure of the components are statistically independent. Thus the

assumption is not testable due to the identifiability problem. (See Basu and Klein (1982) for
details). However, Klein and Moeschberger (1984) show that an investigator can be app eciably

misled in modeling competing risks by erroneously assuming independence.

Recently several authors(Hutchinson(1981), Bagchi and Samanta(1984), Lindley and
SingpurwaUa(1984), Oakes(1982), Hoggard(1985), and Lee and Klein (1987)) have proposed
models for dependent series systems based on a common random environmental factor which

affects all components in the system under operating conditions. Inference for all the model

parameters is not possible, based only on field data from the series systems, due to the
identifiability dillema. However, in many situations, one has available additional dam on the

individual component reliabilities obtained in the laboratory during the testing and design process.
Incorporating this data with the field data allows us to estimate model parameters and check a
possible assumption of independence. In this paper we consider estimation of the model parameters
for a two component series system based on a common environmental stress model. In section 2

I we describe the particular model (Klein and Lee(1987)) on which the inference is made and the
experimental setting. In section 3 maximum likelihood estimators are discussed and in section 4 we

focus on estimating components' hazard rates. In section 5, a graphical estimation procedure is
presented. In section 6 a comparision of the estimators obtained will be made through a small scale
Monte Carlo study. Finally we comment on some tests for independence and present a small study.

2. Model

For simplicity we shall consider only the two component series system. The model for the
system, as fully developed in Lee and Klein (1987) is as follows: Suppose that under ideal
conditions, as encountered in the laboratory, the lifetimes of the two components are X0 and Yo
with reliability functions Fo and GO, respectively. The two components are linked into a system

and put into the field. The effect of the operating environment is randomly improve or degrade e-ach

*! component by a factor Z with the distribution function H(z). That is, under field conditions the
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conditional reliability of the two components, given Z=z, are FoZ and GoZ, respectively. Note that
a value of Z < 1 implies a simultaneous improvement in component reliability, and Z > 1 implies a
joint degradation. Further, we assume that conditional on Z the components are functioning
independently.

In the sequel we assume that Xo and Y. are exponential with hazard rates X1, ) 2 (i.e. Fo(x) =

exp(-XIx)). This assumption is commonly made in reliability studies (c.f. Mann and Grubbs
(1974), Chao (1981), Miyamura (1982), Boardman and Kendall (1970)). We also assume the
random environmental factor, Z, follows a gamma distribution with density function is h(z) =
((a)) 1- 3a exp(-z/13) zcc'1. This distribution is chosen for its analytical tractability and its
flexibility in allowing for a variety of shapes including the exponential and bell shaped density.
With these assumptions the reliability function for the system is
R(t) = EZ { FoZ(t) Goz(t)) = ( 1+ (Xl+X2)t/P) "O3 -  (2.1).
This model has been proposed with a different parameterization by Lindley and Singpurwalla
(1985) and Houggard (1985).

For this model, we note that the system reliability depends only on two parameters 0 =

(X1+X2)/P3 and a, so that if we had data only from systems on test in the operating environment,
the only identifiable parameters are ax and 0. However, in many instances we have extensive data
on the performance of the components under controlled condition so that the whole experiment
consists of three distinct parts.One experiment (El) is done on the first component, A, under
controlled condition, such as found in the laboratory and another independent experiment (Ell) is
performed on the second component, B, under controlled conditions. The third experiment (EIII) is
carried out on the series systems under operating conditions.Sample data from the first two parts
consist of times to failure of each component. The last part consists of the failure times of the
system and an indicator variable which tells us which component causes the system to fail.
Let
Xo,i = Lifetime of the i-th component A in El, i = 1, 2, • • ",n;
YoJ = Lifetime of the j-th component B in ElI, j = 1,2,- • ,m;

n = Number of component A's put on the test under controlled conditions;
m = Number of component B's put on the test under controlled conditions;

So,l=Xo,l+...Xo,n; and So,2 =Yo,l+...+Yo,m. Based on experiment EIII let
The indicator variable whose value is equal to I if the A component failed first and

otherwise equal to 0;
M = 81 + 82 + ' " " + 8s , the total number of system failures from component A;
Ti = Lifetime of the i-th system;

....... -- t- -- -- l llil i i Iil~l~lillm | 
l i l l i l i

- I I .. .d



4
s = Number of the systems put on the test under operating conditions;

3X = Hazard rate of the component A under controlled conditions;
X2 = Hazard rate of the component B under controlled conditions;
a = The shape parameter of the gamma distribution;

= The scale parameter of the gamma distribution.
im

3. Maximum Likelihood Estimators

In this section we consider maximum likelihood estimation based on the three independent
samples described in section 2. The relevant log likelihood is (up to constants)

logL = n'logX1 + m-logX 2 - X1So,1 - ;2So,2 + MlogX1 +(s - M)logX2

S
+ slogct - slogo3 - (a + 1) 1 log {1 +(XI+X 2 ) Tk / 1} (3.1)

k=1

Taking derivatives we obtain the following system of four nonlinear equations:

i) n/X1-So, I+M/X1- s/(Xl+;L2)=0

ii) m/X 2 -S o ,2 +(s-M)/X 2 - s/ (XI+L 2 )=0

s 5
iii) -- E log (1 +(XI+X2)Tk/1 3

} =0
t k=1

s Tk  so
* iv) Z =0. (3.2)

k=1 I+ (XI+X2) Tk/ 3  (C+I)(XI+X2 )

The first two equations are to be solved for X1, X2 to obtain Xll, X21. We may obtain rmle,

Omle by solving the last two equations. In other words, the problem of finding the parameter

values maximizing logL consists of the two parts: the first to find the values of X1, X2 maximizinz

logL1 and the second to find those values of cc and 0 = (X1+ X2) / 3 maximizing logL2, where

logL 1 = n'ogX1 + m'logX2 - XIS o , I - X2So,2 + log(sCIM) + MlogX1 +(s - M)logX' (3.3

-slog(X1 +X2 ), and
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SlogL 2 =sloga + slogO -(a + 1) Z log (1 + 0 Tk). (3.4)
k=1

It should be noted that the M.L.E's of Xl, X2 depend on the samples of the components under

controlled conditions and M, the number of systems which fail due to the failure of component A

only, while the actual system lifetimes are used to estimate a and 0.

Returning to the estimation problem, the M.L.E.'s of XI, X2 are easily calculated as

I= -r1 + (r 1
2 + 4ror 2 )1/2) / 2r2 if r2 

> 0,and {-rI - (r12 + 4ror2)
1 /2) / 2r2 otherwise. The

other estimator X21 is computed as (nC - SolXJ1I) / So2,

where r 2 = So, .o,2 - SO, l2 , rl = (nc + nA) So,1 + (s - nA) So,2 , ro  nC nA,

nC = n + m ; and nA = n + M. Since XI and X2 could be estimated based on EI or Ell alone a

natural question is" How much are these estimators improved by adding information from the
system experiment, EmI?" Since this question is of independent interest we will discuss this
problem in the next section.

Noting that logL 2 is a function of a and 0, the two likelihood equations are

a logL 2  s s
=--Z log {l+0Tk)=0,and (3.5)

a c k=1

a logL2  s s Tk
= - (X + 1) 1 -=0 (3.6)

0 0 k=l I + OTk

Solving 3.5 for a we obtain amle=S/{ log{ 1 + OTk)). Substituting this value into 3.6 we obtain

the following equation which is to be solved for 0

s/0-f 2(0)[s/fl(0)+ 1 1=0 where f1(0) =log (1 + T), and (3.7)

f2(0) = Z Tk / (1 + OTk).
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One can show that 0 mle is in the allowable parameter space if the observation Tk's satisfies

s
s I Tk2 -2(1 Tk)2 > 0 . (3.8)
k=1 k=1

In the case that the data does not satisfy the condition (3.8) we would have a M.L.E. of 0 at 6 =0

which leads to - as a M.L.E. of a. In such a case the reliability for the series system becomes

lim Rs(t) = lim (1 + (%,+% 2 )t /3)a = exp ( -9 (%,i+X 2 ) t) (3.9)
w1->.L ct/->l.L

so that we conclude that the series system has constant hazard rate and it seems reasonable to carry

out the inference procedure accordingly. This condition is satisfied if the sample standard deviation

is larger than the sample mean.

In addition, we note that the estimate of a can be less than one, which implies that the mean

system reliability is infinite. To study the properties of these estimators and a graphical estimator

which will be discribed later, a small scale Monte Carlo study will be presented in section 6.

4. A Note on the Estimation of the Components' Hazard Rates

As discussed in the previous section the M.L.E.'s of X1. X2 , the components' hazard rates

under controlled condition are obtained through the likelihood function logL1 which is constructed

from three independent samples, one based on each component tested separately and one based on

system data. However, the only contribution from the system data to the likelihood function for X_.

X2 is the information as to which component has caused the system failure, while the contribution

from the component data consists of their lifetimes. A natural question is how much does the field

data improve the precision of our estimators of X, and X2?

First, we compute the asymptotic variances of M.L.E.'s of %I, X2 obtained in the previous

section and compare them with the variances of the M.L.E. computed only from the component
samples. Second, we investigate some possible strategies for determining sample sizes under cost



7
constraints which may occur if it costs to check which component caused the system to fail.

We assume that the sample sizes of both components are same, that is, n = m = N. Suppose
that the ratio of the component sample size to the total sample size, N/(2N + s), goes to c as both N

and s go to -c. Now the total information in the study is I(X) and

I(X) =c1I(2) +c1 2 (X)+(1-2c)1 3 (2.) (4.1)

where X = (XI, X2 ) and Ii ( X ) is the information matrix based on the i-th experiment.

From the variance - covariance matrix I 1( X) of M.L.E.s of ( X1  
)

X1
2 (X1+ X2 )2{ c ()L1

2+ X2
2 ) + X1X2 } X1

2 X2
2 (X1 + X2 )2 ( I - 2c)

c2(2.12- X2. 2 )2 + 2 c X12.2 (;L1 + X2 )2  c2 (2X12 - X2
2 )2 + 2 c X122 (X1 + X2)2

X1
2 22 (X1 + X2 )2 (1 - 2c) X22 (X1 + -2 )2 [ c (;L1

2 + X2
2 ) + X1X2} . (4.2)

c2(212 - X2
2 )2 + 2 c X1X2 (X1 + 2'2) 2  c2 (X1

2 - X2
2 )2 + 2 c X1X2 (X1 + X2) 2 , a

we obtain, by Theorem 6.1 of Lehmann (1983), (2N+ s)l/2( L1- 'X1)-> N (0 , I1 - 1),

(2N+ s)1/2 ( X21 -X2 )-> N ( 0, 122-1), where Iij'1 is the i-jth entry in the matrix 1'i(k).

Based on the laboratory experiment El only, the maximum likelihood estimator of X1 is

X10=N/S0 , 1 and 4 N (X10-x 1 ) - > N ( 0, X1
2 ) .Thus the asymptotic relative efficiency (A.R.E.)

of X10 toX X1 1 is e1 =V(X 1 1)/V(X10) and

I1 -1 (X1 + X2 )2 X1X2 + c (X1 + X 2)2 (X1
2 + X2

2 )
C 12 2 (X1 + X 2)

2 
1X 2 + c (X1 + X22)2 (X1 - X 2)

2

if X2 =kX1 ,then e1 = (k+c (k2+ 1)) / {2k+c(k- 1)2). (4.4)

[' . ., , o, ,
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Figure 4.1 shows the A.R.E. of X11 to 1o at varying ratios of component sample size to total

sample size for five different k values. Notice that for fixed c the more similar the hazard rates of
the two components are, the smaller the A.R.E. is. That is, the more information the system
sample contributes to reducing the variance. Figure 4.2 shows the A.R.E. at varying k's for given
ratio of sample sizes.Note that c=0 corresponds to the situation where N is very small compared to
s, c=1/6 to the case where s is of the order 4 times N, c=1/3 to the case where s is almost same as
N, c=2/5 to the case where N of the order 1/2 times N and c=1/2 to the case where s is very small

compared to N. The above result is also valid for the estimators, X2 and X20 since all the

formulae are symmetric in XI and X2 .

In the previous section we saw that estimating the scale parameter ( of the gamma distribution

involves estimating X1 + X2 rather than X, or X2 themselves so that we shall turn to comparison of

the variances of X + X21 and X10 + X20. Using the same procedure as before we are led to the

A.R.E. of X10 + X20 to X, 1 + X-21 which is e2=V(X 1 1+x12 )/ V (X10 +X2 0 ) and

(;'I + ;L2 )2 { XIX2 + c (L'I )L2)2  (
S 1 (X1

2 + ) 2
2) {2 L1)L2 + c (XL1 -) 2 )2  (

Setting X 1 = k 2 ,

2k k
e2  -(1+ )(1 - ). (4.6)

(k 2 +1) c(k- 1)2 +2k
The plots of the A.R.E.'s are shown for various k's and c's in figure 4.3 and 4.4.Here it is found
that when the hazard rates of two components are identical or very similar the information from the
system does not contribute to a reduction of the asymptotic variance. An intuitive explanation for
this is that when the two hazard rates are similar the information from the system, which only
contributes information on which of the two hazard rates is larger, through the numbers of systemlfs
which fail from each type of component failure, contributes least to the inference on the magnitude
of the sum of the two hazard rates.

There are several problems which may be considered in the light of the above results. We will
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discuss two of these:
i ) If we suppose that it costs to check the cause of system failure, when is it resonable to do so.
ii) If we are allowed to randomly check only a fraction of the systems, how many systems should
be checked to achieve minimum variance under some constraints?

To investigate the above two problems we assume that the sample size of the system sample is
fixed at s and that the sample sizes and the unit price of testing both components are the same. Let

PT be the total remaining allowable cost after administrative costs and the costs of collecting

system life data are removed and, let PU be the cost of testing a component in EI and Ell, and let

Pc be the additional cost of checking a system to determine its failure mode. Suppose these costs

PT, PU, and PC are predetermined.The sample sizes are assumed to be reasonably large so that

asymptotic results hold.

We consider question (i). We see that

Nc = PT / 2PU : The maximum number of each component we could test

when systems are not checked.

R = Pc /PU : The ratio of the costs,

Q = Nc I s : The ratio of the component sample size if systems are not checked to the

system sample size, and,

N = Nc - R-s / 2: if we check all systems.

Our goal is to find the maximum value of R such that V(. 1 1,N+X21, N) <V(1I 0,J + X20 , Nc )

where the subscripts N, Nc denote the component sample sizes when the estimators are

computed. Noting that V(X I 1,N + X21,N) is approximated by

1 X1 + X2)2 ]cX1  X + Xl 2  I where cf = N/(2N+s), and

2N +s Cf cf(XI - X2 )2 + 2XIX 2

V(X 1,N+ X20,N) bY (%1
2 + X22) / NC , we obtain the following approximate ratio

. .. i , . , i i I I I i I I -I I I
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Q 0. o~R

V (X .,N + X21, N) Q (k + I) 2  (k-I )2 + k
2Q + (I -R)

A ( (4.7)Q - 0.5R
V(XON+20, N) Q - 0.5R k2 + 1  2+ - (k-1)2 +2kV*( .0,c 'C2Q +(1i-R)

If we let r(R, Q, k) denote the above ratio of variances, after some algebraic

manipulation we see that r(R,Qk) < 1 implies

R2 (k + 1)2 - R (2Qk2 +4Qk + 4k + 2Q ) + ((k-i) 2 / (k2+1))4Qk > 0. (4.8)

Thus the maximum value of R for which checking of the system failure mode is advisable is

I

(k + 1)2 (B - (B2 - 4Qk(k- 1)2)1/2 ), where B =Qk2 +2Qk-+ 2k+Q. (4.9)

Figure 4.5 shows the maximum value of R for each Q at different k's. For example, suppose that Q

is equal to 10 computed using the predetemined values s, PT, and Pu.If we also assume that the

ratio of the hazard rates is ,3, which might be guessed through past experience then this figure tells

that if the relative cost, R, is less than 0.1 it is advisable to check the systems. As discussed

before, if the two components have the same hazard rates then it is not recommended to do so.

Considering the question (ii), we find the number of systems to be checked to achieve optimal
results in terms of the variance of the sum of the two M.L.E.'s under the given constraints. Let s

be the number of systems to be checked among the s systems, and set y = s* / Nc.Noting that

N=Nc - 0.5 R s*, and recalling that the ratio of component sample to complete sample size c is

N/(2N+s*), we obtain the asymptotic variance of V(X I ,N+X21,N) ignoring the constant terms as

1 (c(k-1) 2 +k } 7

q(y,R,k) = I ] . (4.10)
I - 0.SRy (c(k-1) 2 +2k

The derivative of q with respect to y is,



dq ql (y)

dy (1 - 0.5Ry)2  k + 1)2 + y (2k - kR - 0.5k 2 R - 0.5 R )] 2

where ql (y) = y2 [ 0.5R (k 2 + 1) - k [.5R (k + 1)2 - 2k ] (R/2)

+ y [ R (k 2 + 1) (2k - 0.5R (k + 1)2)]

+[0.5(k+1) 2 (k2 +1) ] R - k(k-1) 2 .

Studying the function ql(y) in detail we find that q( y, R, k) is minimized at y =0. That is, no

contribution is made by checking the system failure mode if the relative cost Pc / PU is larger than

2k ( k - 1 )2 ] / [ (k + 1)2 (k2 + 1) ], and that if the relative cost is smaller than the above ratio the

optimal number of systems to be checked is, 2 + 1)'42 k (k- i) ( 2 +I
Nc k-0I + (4.12)~~~(k - 0.5R (k2 + 1) ) R ( 2k - 0.5R (k + 1)2 ) k - 0.5R (k2 + 1) ] " (.2

Figure 4.6 shows the optimal fraction y = s*/Nc at the allowable R's for k = 2, 3, and 5. For

example, suppose we have the idea that the ratio of the hazard rates, k is equal to 5, and that the
relative cost R is equal to .1. Then this figure tells that the optimal number of the systems to be

checked is 1.5 times as much as Nc .

6. Graphical Inference

In this section, we discuss a graphical approach which is helpful in visualizing the condition of

existence of the estimators and also the degree of dependence as well as in checking feasibility of

the model. Later in this section we suggest estimators based on this graphical approach.

Throughout this section we assume the same model as in the section 2. However we shall handle

the model as if the component hazard rates X' and X2 were known, based on data from the

laboratory experiment, since the estimation of X, and X2 presents little difficulty and has been

discussed in detail in section 4. Thus, the model in this section is that the lifetime, T, of a system in

the operating environment has a survival function Rs (t) = (1 + 0 t ) -- (5. 1)
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The method we present in this section is based on the scaled total time on test (STTOT) plot of
Barlow and Campo (1975). They have presented a graphical approach to failure data analysis for

arbitrary distributions, using the total time on test transforms innoduced and discussed in Barlow

et. al. (1972).

Suppose A( t) is the cummulative distribution function of T.

a- The STTOT transform for T is defined by

t A 1( t) 1(1)

STA (t) Rs (u)du/ R(u)du
0 0

- ( 1 - t )(a-1)/a for cc > 1. (5.2)

Here we note that STA( t ) depends only on the shape parameter ac. Figure 5.1 shows the form of

the STTOT transform for several values of a. Notice that for all a, the STTOT transform is below

the 45 0 line (which corresponds to exponential system life) since the hazard rate of the series
system is decreasing.This figure tells us that the smaller the shape parameter is, the more

dependence that is induced.

*] The emperical total time on test at Ts r is defined by Vs r = Ts,1 +Ts,2+- +(s-r+1)Ts, r

where Ts, 1, Ts, 2 , , Ts, s are the ordered system failure times, and plotting Vs,/Vs,s versus r/s

for r = 1, 2, "",s, we obtain so called the emprical STOT plot. Since Vsr/Vs5 converges to

* STA( t ) with probability one and uniformly in 0 < t _ I as s -> co and r/s -> t, the STTOT plot

can be compared to the figure 5.1 for a graphical check of the model's validity. We can also use

the STTOT transform to obtain estimators of the shape parameter a Let Cj = log(1-i/s) and Di =

log(l- Vs,i / Vs,s ), i = 1, ... , s-1. From STA( t) = 1 (1 - t)(o t- 1)/a we have log (1 - STA(t)) =

(1 - 1/a) log (1 - t) so that Di = (1-1/a)C i , i = 1, ..., s-1.

First we consider, as a reasonable estimator of a, the value. of a which minimizes the squared

distances between Di and (1 - I/a) Ci . That is,

s-I (Di - (1-1/a) Ci) 2 .

i=l

0.
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The resulting estimator is ais = 5 Ci2 / (X Ci2 - 5 Cj Di) (53)

which is in the parameter space if , Ci2 > X, Ci Di.A better estimator should be obtained by

weighting the Di's differently since for i < j, Var (Di) < Var (Dj). The variance of Di depends on

the unknown parameter a so we weight by the variance of Di computed under an assumed

exponential distribution. If T1, T2 ," , Ts are assumed to follow an exponential distribution, then

[ 1 -Vsr /Vs,s ] follows a beta distribution with parameters s-r and r for r = 1,2, ...,s- 1.Noting

that the r-th order statistics of a sample of size s- 1 from a uniform distribution follows a beta

distribution with parameters r and s-r one can show that -Di is the i-th order statistics of a sample

of size s- I from a standard exponential distribution. Hence the variance of Di in that case is

i 1
Vi = i s-1

j=l (s-j) 2

so that a weighted least squares estimator of x is

Xwls= "Ci 2IVi/ ( . CD ) if X Ci2/Vi > X CinD/V i. (5.4)
Vi  Vi

Once we have obtained an estimator of a by either of the two least squares estimators, we

substitute this value into (3.4) and solve this equation numerically for 0 ls or Owls* We note that the

unique root of the equation lies between I/((x Tss) and I/(c Ts, 1).

Due to the computational complexity of these estimators, analytic properties of these estimators
are not available, so a small scale Monte Carlo study was performed in the next section to compare

these estimators with three other estimators, the M.L.E. in section 3, the Method of Moments

Estimator (M.M.E), and one suggested by Hui and Berger (1983).
The M.M.E.s, found by equating the first two sample and theoretical moments, so that

I

el, .. . --,,, mrow= ,-,,= m at nwanamm m mm l~m mm ata I I I I I I I nI II
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amme =1 + sE2  if sE 2 > 2E 1
2 , and (5.5)

s E2 - 2 E1
2

s E2 - 2 E1
2  s sem e = , where E1 = I Tk, E2 =1 Tk2  (5.6)

E1 -E2  k=1 k=1

Hui and Berger (1983) have suggested estimators of a and 0 in a different context. To avoid
difficulties of maximizing the loglikelihood function with two unknown parameters they have

suggested a modified method of moments estimator as follows., The estimator of a is the solution

to

s s s(a+l) s Tj
I Z log(1 - Ti ) + -0, (5.7)

Si=1 E1 a E1
2  i=1 1 + sT i /(El')

and the estimator of 0 is [ a E1 / s ]-1. It is possible that there is no finite solution to this equation.

With an argument similar to that used in M.L.E. case it can be shown that a sufficient condition for

a finite solution to (5.7) is that s E2 > 2 E1
2 ,which is the same condition needed for exsistance of

the M.L.E. and M.M.E..

6. Monte Carlo Study

In this section we compare the estimators of the shape parameter a and the scale parameter 0
through a small scale Monte Carlo study. The main comparisions of interest are done in terms of

the bias, standard deviation of the estimates of ax and 0, and the number of samples where the

estimators exist. Also the estimators of system reliabilty at to = 0.1006 are compared. Random

samples of size s = 15, 30, 50, 75, or 100 were generated with X1 + X2 = 3, 13 = 3, so 0 = I and cx

= 2, 3, 5. 1000 samples were generated for each combination of s and a. The bias, standard

deviation of the estimates and NS, the number of samples where the estimator exists is reported in

table 6.1 for a, table 6.2 for 0, and in table 6.3 for an estimator of the system reliability obtained

from (5.1) at to. The true system reliability at to is .8255 when a = 2, .75 when x =
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Table 6.1: Bias and Standard Deviation (SD) of Estimators of a

Sample Esti- a = 2 a = 3 a =5
Size mator NS Bias SD NS Bias SD NS Bias SD

15 role 769 4.5 29. 642 7.3 39. 522 38.7 573. -

wls 852 4.8 41. 753 36.4 843. 665 8.2 53.
* 766 1.3 5. 636 1.3 9. 516 -0.7 5.
Is 762 6.8 49. 653 13.1 149. 558 30.3 493.
mne 770 9.1 37. 643 16.8 77. 522 69.8 925.
her 770 14.4 65. 643 26.0 114. 522 112.9 1505.

30 nole 916 2.8 20. 809 5.7 30. 674 20.4 148.
wls 953 4.7 37. 870 13.8 141. 752 9.3' 68.
* 912 1.1 3. 804 1.8 6. 660 3.2 29.
Is 877 6.4 52. 768 11'.9 100. 669 13.7 109.
mine 916 6.1 32. 809 9.9 104. 674 31.7 202.
ber 916 10.0 52. 809 17.7 68. 674 56.3 347.

50 mle 979 5.8 114 916 3.6 18. 801 7.6 39.
wls 981 1.7 10. 935 6.9 65. 850 9.0 97.
* 976 1.0 3. 912 2.9 29. 787 2.0 10.
Is 956 4.0 16. 864 6.4 33. 756 13.4 88.
mie 979 8.5 131. 916 6.6 25. 801 11.4 52.
ber 979 15.4 241. 916 12.5 42. 801 23.4 91.

75 role 996 0.9 4. 963 2.5 14. 893 12.8 139.
wls 998 1.0 5. 977 2.8 17. 915 8.0 94.
* 996 1.0 5. 958 1.3 5. 878 2.9 16.
Is 974 2.4 12. 925 11.6 144. 823 6.6 22.
mrne 996 2.2 4. 963 4.7 24. 893 15.3 122.
ber 996 4.5 8. 963 9.6 38. 893 32.6 260

100 rnle 999 0.5 3. 978 1.7 7. 892 9.5 84.
wls 1000 1.7 35. 989 2.1 12. 913 19.6 307.
* 999 0.6 2. 978 1.3 5. 879 13.7 273.
Is 989 1.5 9. 956 3.7 19. 835 11.0 81.
mme 999 1.7 5. 978 3.0 9. 892 13.0 120
ber 999 3.7 8. 978 7.2 15. 892 27.1 203.

'*'represents the weighted least squares estimator restricted to those samples where all estimators
exist.
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Table 6.2: Bias and Standard Deviation (SD) of 0

Sample Esti- a = 2 a =3 a =5
Size mator NS Bias SD NS Bias SD NS Bias SD

15 role 769 0.356 1.702 642 0.691 1.900 522 1.352 3.109
wis 852 -.102 0.742 753 0.210 1.049 665 0.715 1.609
* 766 -.027 0.025 636 0.390 1.040 516 1.084 1.599

is 782 -.192 0.729 653 0.119 1.031 558 0.578 1.536
n 770 -.683 0.205 643 -.513 0.348 522 -.238 0.601
ber 770 -.803 0.122 643 -.705 0.203 522 -.546 0.348

30 role 916 0.112 0.919 809 0.175 1.049 674 0.558 1.609
wIs 953 -.135 0.580 870 0.000 0.757 752 0.366 1.118
* 912 -.100 0.567 804 0.074 0.740 660 0.523 1.104
Is 877 -.254 0.586 769 -.096 0.745 669 0.180 1.026
mine 916 -.623 0.192 809 -.469 0.338 674 -.199 0.576
ber 916 -.798 0.095 809 -.725 0.160 674 -.584 0.282

50 mle 979 0.016 0.648 916 0.075 0.766 801 0.256 1.559
wIs 989 -.126 0.492 935 -.012 0.618 850 0.184 0.869
* 976 -.115 0.486 912 0.011 0.609 787 .0.267 0.850
Is 956 -.263 0.514 864 -.112 0.663 756 0.105 0.863
mme 979 -.575 0.184 916 -.404 0.333 801 -.193 0.541
ber 979 -.792 0.079 916 -.718 0.135 801 -.615 0.232

75 mle 996 -.025 0.522 963 0.030 0.624 893 0.128 0.817
wls 998 -.125 0.432 977 -.027 0.555 915 0.112 0.728
* 996 -.124 0.431 958 -.010 0.546 878 0.153 0.715
Is 974 -.247 0.275 925 -.144 0.603 827 0.014 0.747
mme 996 -.541 0.174 963 -.375 0.322 893 -.189 0.535
ber 996 -.790 0.065 963 -.717 0.120 893 -.628 0.210

100 mle 999 -.019 0.437 978 -.028 0.515 892 0.033 0.683
wis 1000 -.101 0.381 989 -.075 0.472 913 0.020 0.628
* 999 -.100 0.401 978 -.055 0.465 879 0.055 0.615
Is 989 -.216 0.423 956 -165 0.511 835 -.064 0.666
mme 999 -.508 0.153 978 -.345 0.297 892 -.206 0.494
ber 999 -.785 0.052 978 -.716 0.104 892 -.644 0.185

'*' represents the weighted least squares estimator restricted to those samples where all estimators
* exist.

4

. . . . . . .,,s n i l l4l l l
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Table 6.3: Bias and Standard Deviation (SD) of Estimators of System Reliability at
to =.1006

Sample Esti- a = 2 a = 3 a =5
Size mator NS Bias SD NS Bias SD NS Bias SD

15 mle 769 -.012 .0647 642 -.018 .0815 522 -.029 .1011
wIs 852 -.004 .0586 753 -.010 .0767 665 -.024 .0967
* 766 -.006 .0577 636 -.015 .0764 516 -.030 .0968
Is 762 0.002 .0588 653 -.006 .0748 558 -.020 .0977
mne 770 0.037 .0503 643 0.031 .0661 522 0.012 .0926

769 0.064 .0463 643 0.067 .0616 522 0.054 .0921

30 rnle 916 -.005 .0473 809 -.007 .0577 674 -.022 .0691
wis 953 0.002 .0424 870 -.007 .0552 752 -.020 .0674
* 912 0.001 .0426 804 -.006 .0544 660 -.027 .0665
Is 877 0.010 .0434 769 0.002 .0551 669 -.013 .0651
mne 916 0.037 .0357 809 0.024 .0490 674 0.001 .0613
ber 916 0.069 .0335 809 0.062 .0472 674 0.045 .0608

50 mle 979 -.001 .0372 916 -.003 .0429 801 -.006 .0545
wls 989 0.003 .0349 935 -.001 .0412 850 -.006 .0530
* 976 0.003 .0348 912 -.002 .0411 787 -.008 .0528
Is 956 0.010 .0359 864 0.005 .0431 756 -.002 .0532
mrne 979 0.035 .0300 916 0.022 .0366 801 0.010 .0494
ber 979 0.071 .0233 916 0.066 .0340 801 0.055 .0485

75 nile 996 0.000 .0290 963 -.001 .0372 893 -.005 .0442
wls 998 0.004 .0274 977 0.000 .0356 915 -.005 .0436
* 996 0.003 .0274 958 0.000 .0357 878 .-. 006 .0430
Is 974 0.010 .0292 925 0.007 .0374 827 -.002 .0431
mne 996 0.034 .0244 963 0.021 .0327 893 0.007 .0406
ber 996 0.072 .0238 963 0.067 .0313 893 0.051 .0380

100 nile 999 0.001 .0243 978 0.001 .0309 892 -.002 .0375
wls 1000 0.004 .0234 984 0.002 .0299 913 -.001 .0392* 999 0.004 .0233 978 0.002 .0299 879 -.002 .0390

Is 989 0.010 .0248 956 0.008 .0311 835 0.003 .0380
mme 999 0.034 .0223 978 0.019 .0267 892 0.008 .0353
ber 999 0.075 .0216 978 0.067 .0261 892 0.052 .0345

'*' represents the weighted least squares estimator restricted to those samples where all estimators
exist.
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3,and .619 when a =5. Also reported in each table is the bias and standard deviation of the
weighted least square estimators when they are restricted to those samples where the other
estimators exist.

From these tables we note that Berger's modified estimator performs very poorly. Also
the weighted least squares estimator allows for estimation of parameters in many more samples
when s is small. In general the maximum likelihood estimator out performs the other estimators,
however, when the weighted least squares estimator is restricted to those samples where the
maximum likelihood estimator exists, this estimator performs much better when s is small. The
somewhat better performance of the M.LE in terms of bias is deceptive since some of the estimates

of a are less than one, which implies that the mean system reliability is infinite. Also the weighted
least squares estimator of system reliability seems to out perform the other estimators of the system

reliability in spite of its relatively poor performance as an estimator of 0. Our recommendation is to
use the weighted least squares estimator since it more often provides estimators of the relevant
parameters and is somewhat easier to compute.

7. Comment On Test for Deoendence

In this section we discuss the problem of determining whether there is a dependence
structure induced by an environmental factor. In our setting, we observe only the system failure

times Ti with the assumption that the survival function of Ti is Rs(t) = (1+ Ot) -a. As pointed out

in section 6, the graphical presentation indicates that the shape parameter, ac only affects the

dependence structure. Accordingly we will call the quantity y = 1/a a measure of dependence
induced by the environmental factor. Since it is resonable to assume finite mean system lifetime,

that is, a is assumed to be greater than I, y varies from 0 to 1. If there is no dependence induced ;

is equal to 0 and the closer y is to 1 the more dependence induced

One possible statistics is constructed from the weighted least square estimator as

Qs = CiDi / Vi Ci2 / V (7.1)
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Under the null hypothesis of independence, - Di follows the distribution of the i-th order statistics

among the sample of size s-1 from an exponential distribution so that Qs is just a linear combination

of exponential order statistics. Hence Qs has the same distribution as a linear combination, Qs(z),

of identically independent exponential random variables since the i-th exponential order statistics
can be expressed as a linear function of s-I independent standard exponentials. Correspondingly
we have

S-1
Qs(z) = 2 PiZi (7.2)i=1

where Zi is a random variable following the standard exponential distribution,

1 s-i Cj/Vi
and pi = - J(7.3)

s - I j--i s-I 2s j Ck2 / Vk

k=1
The exact distribution of Qs(z) is found in David (1981) as the mixture of exponentials,

s-1 wi  -tfQ(z ) (t) - exp(- ), where wi = ps 2 /( l( Pi(7.4)fi= Pi Pi h

On the other hand we can note that if y goes to 1, Qs tends to have smaller value. Table 7.1 shows

the critical values of the standardized Qs for different sample sizes with the type one error

probability ot = .01, .05,. 1. Since the distribution under alternatives is hard to obtain a simulation
study has been constructed to study the tests power which is discussed later.

A second test is based on the cummlative total time on test statistic, which has been introduced
by Barlow et. al.(1972). From the cummulative total time on test statistics (CTTS) which they have
defined as

Bs  Vs r where Vs, r is the total time on test defined in section 5, we develope a

r=l VS, s

test statistics Rs as

s p . i° -II
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g! (12 s )1/2 [s-I S Vs~r 1 ] 75

r=l Vs s  2

which has smaller values as y goes to I.

Table 7.1: Critical Values of the StandardizedStatistics of Os

Sample Size 1% 5% 10%
s = 15 -1.8880 -1.4540 -1.1968

s = 20 -1.9382 -1.4815 -1.2106
s = 25 -1.9796 -1.5000 -1.2194
s = 30 -2.0010 -1.5140 -1.2260
s = 35 -2.0334 -1.5243 -1.2307
s = 40 -2.0526 -1.5322 -1.2345
s = 50 -2.0816 -1.5453 -1.2404

A third test statistic was introduced by Klefsjo (1983). He has used the property of convexity of the

SITOT, STA(t) and obtained the statistic,

s (s -J + 1) (Tsj -"Tsd- 1)

Ks- aj (7.6)
j=1 Vs,s

((s- 1)3 j - 3 (s+ 1)2 j2 + 2(s+ 1)j3 }
where aj = which has smaller values as

6

y goes to 1.
Using the asymptotic properties of linear combination of order statistics he has shown that under

the null hypothesis, the test statistic Ks is asymptotically normally distributed. In addition to that.

he has constructed a list of critical values from the exact distribution of Ks under the null

hypothesis.
We have, by simulation, estimated the powers for the various shape parameter values. Sample

sizes 20 and 50 have been studied.In figure 7.1 and figure 7.2 the estimated power curves for the
three tests mentioned above are obtained by the following scheme. The total number of replication
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for each investigated y-value, measure of dependence, which increases from .00 to .75 is 1000.

The significance levels are equal to .05. Ihe three powers at each y-value have been estimated from

the same set of data. Our investigation leads us to the conclusion that Qs and R. outperform Ks and

that the test statistics Qs, which has been developed only for this specific model, is not better than -

Rs which can detect more general alternatives than Qs. However, the test statistics Qs, is simple to

obtain while we are making a graphical inference on the shape parameter and is guaranteed to keep

power as high as Rs.
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A RANDOM ENVIRONMENTAL STRESS MODEL FOR COMPETING RISKS

John P. Klein and Sukhoon Lee

Department of Statistics
The Ohio State University
Columbus, Ohio 43210

ABSTRACT

A random environmental effects model is proposed for competing risks experiments. The

model assumes a random stress, Z, which changes the scale parameter of each of the assumed

Weibull times to occurrence of the risks. Some general properties of the model are discussed, and

specific properties for a Uniform or Gamma stress model are presented. Estimation of parameters

under the Gamma stress model is considered, and a new estimator based on the scaled total time on

test transform is presented.

INTRODUCTION

The problem of competing risks arises naturally in a number of engineering or biological

experiments. In such experiments, for some items put on test, the primary event of interests (such

as death, component failure, etc.) is not observable due to the occurrence of some competing risk

of removal from the study (such as censoring, failure from a different component, etc.).

Competing risks arise in an engineering context in analyzing data from

(a) series systems,

(b) field tests of equipment with a fixed test time and a random or staggered entry into

the study, or
(c) systems with multiple failure modes.

Competiag risks arise in biological applications in analyzing data from
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(a) clinical trials with a fixed trial duration and staggered entry

(b) clinical trials with some patients withdrawing from the trial prior to response

(c) studies of the time to death from a variety of causes

A common assumption made in analyzing competing risks experiments is that the potential

(unobservable) times to occurrence of the competing risks are independent. This assumption is not

testable due to the identifiability problem. That is, for any dependent competing risks model, there
M exists an independent competing risks model which yields the same observables. (See Basu and

Klein (1982) for details.) However, Moeschberger and Klein (1984) show that an investigator can

be appreciably misled in modeling competing risks by erroneously assuming indepencence.

In this paper we present a model for dependence between the various risks by assuming that

dependence is due to some common environmental factor which effects the potential times to

occurrences of each risk. In section 2 we present the model and study its properties for bivariate

series and parallel systems. In section 3, we consider estimation of the model parameters for

competing risks systems.

2. THE MODEL

For simplicity we shall consider the problem of bivariate systems and discuss our model in

nU terms of engineering applications. We assume that under ideal, controlled conditions, as one may

encounter in the laboratory in the testing or design stage of development, the time to failure of the

two components, to be linked in a system, are X0 and Y0. We suppose that under these

conditions, X0 ,Y0 have survival functions F0 , Go on [0, -*). We assume that both X0 andY 0

follow a Weibull form with parameters (T 1' Xl) and ( 112, X2), respectively, That is, F0 (x) = exp(-

.,xfl 1). The Weibull distribution, which may have increasing ( 1 > 1), decreasing (71 < 1) or

constant failure rate (Ti = 1) has been shown experimentally to provide a reasonable fit to many

different types of survival data. (See Bain (1978)). We now link the two components into a

system in such a way that under ideal lab conditions the two components are independent.

Now suppose that the above system (X0 , Y0 ) is put into operation under usage conditions.

We suppose that under such conditions the effect of the environment is to degrade or improve each

component by the same random amount. That is, the effect of the environment is to select a

random factor, Z, from some distribution, H, which changes the maginal survival functions of the

two components to F0Z and G0 Z . A value of Z less than one means that component reliabilities are

simultaneously improved, while a value of Z greater than one implies a joint degradation. The
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resulting joint reliability of the two components' lifetimes, (X,Y) in the operating environment is

F(xy) = E[exp(-Z(Xlx'lI+ )L2y'2 )]. (2.1)

This model has been proposed by Lindley and Singpurwalla (1984) in the reliability context

when F0 , Go are exponential and H( ) follows a gamma distribution. This basic dependence

structure was also proposed by Clayton (1978) to model associations in bivariate survival data, and
later by Oakes (1982) to model bivariate survival data. Hutchinson (1982) proposed a similar

model when H( ) has a gamma distribution and F0 (t) = G0 (t) = exp(-tTI).

The model described above for a general distribution of the environmental stress has a

particular dependence structure which we summarize in the following lemmas.

Lemma 1. Let (X,Y) follow the model (2.1) where Z is a positive random variable with finite

r s
(_- + _)th inverse moment. Then

r/71 1 "sT12 -(r/Tj 1 +s/T12)
E(Xr Ys) = 1  X2 (1 + r/T1l) r(1 + s/T12) E(Z ) (2.2)

The proof follows by noting that, given Z = z, (X,Y) are independent Weibulls with parameters
I "rthl I -r/l 1I-

(Tl1, Xl z) and (12, X2 z), respectively and E(XrIZ=z) z r(l+ rnl1 ) with a similar

expression for Ys. When the appropriate moments exist, we have

-I/J I

(A) E(X) = E(X0 ) E(Z ),

(B) V(X) = E(X 0
2 ) Var (Z )+ E(Z )2 Var(X),

(C) Coy (X,Y) = E(X 0 ) E(Y 0 ) Cov(Z , Z which is greater than 0.

If T1 = T12 = T1 then the correlation between (X,Y) is

r(I+ 1/rj)2 Var(Z1 I/ )TI

P=

Var(Z1 1 /Tl ) r(1 +2/T)+ (r(I+2/11) - r(l+ 1/Tl) 2 ) E(Z- lrI) 2

In this case the correlation is bounded above by r(i+Irl)2 / r(1+2/l). Figure I shows the

maximal correlation as a functcion of TI for TI E (0, 10). Note that this maximal correlation is an

__ S
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increasing function of i". One can also show that F(x, y) is positive quadrant dependent for any

TI 1, 712•

Exact expressions for competing risks quantities of interest can be computed when a

particular model is assumed for the distribution of Z. We shall consider the gamma and uniform

models. Consider first the gamma model with hz(z) = ba za-l exp(-bz)/r(a), z > 0. For this

model, the joint survival function is

F(x,y) = ba (2.3)

[b+ Xl x  +X2 ylTja

which is a bivariate Burr Distribution (see Takahasi (1965)), the marginal distributions are

univariate Burr distributions with

E(X) (lb) / (I+1/r 1 )r(a- 1/111) r(a), ifa > I/Tl,

-2/i{ I "(l+2trl)r(a-2/1l )  " r(l+ltrl)r(a-l/1l)] 2 }
Var(X) (X /b) {(- [ " if a > 2/l

r (a) r(a)

with similar expressions for E(Y), Var(Y). The covariance of (X,Y) is

-]/-nI -1/12 F(a-1/Tll-1/r12) Ra -I/rl 2) F(a -1 /712

Cov(X,Y) = (Xl/b) (X2/b) r(l+/7 1l) I"(1+1/-12) lr( / ) a- (a)F(a) r-(a)

for a > 1/ri + 1/r12. For the gamma model, the reliability function for a bivariate series system is

given by

RSt) = (1+(X/b)t + (X2 /b)tr1 2 ya, (2.4)

and for a parallel system by

rlr/ -a112 112

RP(t) = (I+( X I/b)t I (1+ (X2 /b)t )a- (1+( Xl/b)t + (X2/b)t )-a (2.5)

Figures 2A-E are plots of the series system reliability for Xl = 1, X2 = 2 and several combinations



of 111, 112 . Each figure shows the reliablity for a = 1/2, 1,2, 4, and the independent Weibull

model. In all cases, b = 1. For these figures we note that for fixed X1, X2 1 1 , 112' t, the series

system reliability is a decreasing function of the shape parameter a. Figures 3A-E are plots of the

parallel system reliability (2.5) for the above parameters. Again, the reliability is a decreasing

- function of a. Also in both the series and parallel system reliability, the shape of the reliability

function is quite different from that encountered under independence.

The gamma model is a reasonable model for the environmental stress due to its flexibility and

the tractability of the model in obtaining close form solutions for the relevant quantities and in

estimating parameters. However, in some cases, such as when the operating environment is

always more severe than the laboratory environment, the support of H may be restricted to some

fixed interval. A possible model for such an environmental stress is the uniform distribution over

[a,b]. For this model, the joint survival function is

[exp (b( 1 x + X2y ))-exp(-a( X1x + X2y ))]F(x,y) = _________________________(2.6)

(b-a)(X 1 x 1 +X2 Y )

-1/711 (r11- 1)/111 (I 01-1)/
E(X) = o F(l+l/r 1) 1 (b -a )/{(Tl1 -1)(b-a)] if 1 1

= n(b/a)/[Xl (b-a) ]  if Ti1 =1,

-2/1{ (1l 1-2)1111 (1l 1-2)/11

Var(X) = -1  I(l+2/11l)T1l (b -a

(b-a)

(7i- 1 /T 11) (711-1/1 1))2
- (I + /-nl)2 71 (b -a if 11; 1,2

0r11-1) 2(b-a)

2/(X I 2ab) - 0n(b/ a) 2 /[(b-a) X 112  if l= I

Qn(b/a) 1I
Xli - 2 2 if 1 = 2(b-a) (b 1/ 2 +a a2)2
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FIGURE 2 B
SERIES SYSTEM RELIABILITY UNDER GAMMA(A,1) MODEL
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FIGURE 2 C
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FIGURE 2 D
SERIES SYSTEM RELIABILITY UNDER GAMMA IAI) MODEL
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FIGURE 2 E
SERIES SYSTEM RELIABILITY UNDER GAMMR(A,1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 3 A
PARALLEL SYSTEM RELIABILITY UNDER GAMMAIA,I) MODEL
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FIGURE 3 B
PRRRLLEL SYSTEM RELIABILITY UNDER GRMMAtR,1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGUR3E 3 C
PARALLEL SYSTEM RELIABILITY UNDER GAMMA(R,1) MODEL

* FOR THlE ENVIRONMENTAL STRESS.
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FIGURE 3 D
PARALLEL SYSTEM RELIABILITY UNDER GAMMA(A,1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 3 E
3 PARALLEL SYSTEM RELIABILITY UNDER GAtMR(R.1) MODEL

FOR THE ENVIRONMENTAL STRESS.
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and

111 T2 III 12
Co(XY)=r(I+l/IT(I+1r 2) 11112 (b -a

X1I/711 X 1/hil 01 I12T -112) (b-a)

11112 (b -a )(b -a ) i 11 1 1 ,1 1 /1

(TI-1)X(T12-l1) (b-a)2  1f1*,1*,/1+11*

I - - -_ (b a A

1/111 11i/(7li-l) (b-a) ('11-1) ,(b-a) 2  ( a )

if ihj1+ 1/711= 1

F (ih/ii) li'1y (b -a ) j i1 (b -a ) n(b/a)

I I nb/)

(X I X2) (ab) (-b-a)2T r 1 =1

For this model, the reliability function for a series system is

Rs(t) = [exp(-b( XIt T1I + X2 t 1 - exp[-a( Xi T +)2t12)1 (2.7)



(b-a)(X 1t + X2  )

and for a parallel system is

Rp(t) = [exp(-b(.1t I ) -exp(-a X. t l ) + [exp(-b X2 tT2) -exp(-a X2 tT2 ) Rs(t)

(b-a) XIt (b-a) X2t

Figures 4A-E show the reliability for a series system and figures 5A-E for a parallel system

under the uniform model for various combinations of X1, X2 ,11 1, 1 2 a,b. Notice that when A =

.25, B = .75, which corresponds to an operating environment which is less severe than the test

environment, the system reliability is greater than that expected under independence, while when

(a,b) = (1.25, 1.75) or (1., 2), which corresponds to an environment more severe than the test

U environment, the system reliability is smaller. Also when the (a,b) contains 1, which corresponds

to an environment which incurs the possibility of no differential effect from that found in the

laboratory, there is little difference in the dependent and independent system reliability.

3. Estimation of Parameters Under Gamma Model

Consider the model (2.3) with l 1 = T12 = i l. For this model, the reliablity for a series system

is

(X"1 +X2)
Rs(t) = (1 + tT)-a. (3.1)

b

Notice that this model depends only on two parameters 0 = (;. 1+ 2 )/b and a so that if we had data

only from systems on test in the operating environment, the only identifiable parameters are a, 0,

-A



FIGUR9E '4 A
SERIES SYSTEM RELIABILITY UNDER UNIFlR,Bj MODEL
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FIGUR~E 4 B
SERIES SYSTEM RELIABILITY UNDER UNIF(RPB) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGUR9E 4j C
SERIES SYSTEM RELIABILIlY UNDER UNIF(AB) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 14

SERIES SYSTEM RELIABILITY UNDER UNIF(R,B) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 4j E
SERIES SYSTEM RELIABILITY UNDER UNIF(A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 P
PARALLEL SYSTEM RELIABIL ITY UNDER UNIF (A. 6) MODEL

U FOR THE ENVIRONMENTAL STRESS.
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F IGURE 5 B
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FIGURE 5 C
* PARALLEL SYSTEM RELIABILITY UNDER UNIF(A.B) MODEL
* FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 0
PARALLEL SYSTEM RELIABILITY UNDER UNIF(A,BJ MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 E
PARALLEL SYSTEM RELIABILITY UNDER UNIF(A,B) MODEL
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'n, not X1, )2, i, a, b. However, in many instances we have extensive data on the performance of

the components in the lab under ideal operating conditions so that one may consider X I, X2, ii to be

known based on estimates from this data. We shall focus on the problem of estimating 0 and a,

based on data on the system failure times collected in the operating environment. Let t 1, ..., tn be

the failure times for n such systems put on test, and, let wi =t i = 1, ..., n.

Prior to attempting to estimate (a, 0), we would like to check if the model (3.1) is feasible.

A graphical check of this model can be done through the scaled total time on test (STTOT) plot of

Barlow and Campo (1975). The STOT for W is

P"1 (t)
f Rs(t)dt
0Gw(t) = -_______ l-(1-t)(a '1)/a for a > 1. (3.2)
P 1 (l)
I Rs(tkdt

Note that (3.2) depends only on a. Figure 6 shows the form of the SIOT for several values of a.

Notice that for all a, the STT'OT is below the 45* line (which corresponds to exponential system

life) since the hazard rate of the series system is decreasing. Let

i
Tn(W(i)) = 7 Wj) + (n-i)W(i), (3.3)

j=l

where W( 1 ) , W(2 ) : ... ! W(n ) are the ordered systems failure times be the total time on test at

W(i). The empirical S'I'OT plot then plots (i/n, Tn(W(i))/T(W(n))) which can be compared to

figure 6 for a graphical check of the model. Also, crude estimates of a can be obtained by
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comparing the empirical and theoretical ST"OT plots. When there is no random environmental

effect and the components are independent, then the empirical STOT plot should look like the 45m

line. Also as a tends to infinity this plot approaches the 450 line.

We now consider several estimates of a and 0. The log likelihood for the model (3.1), based

on a sample of size n, is
n

L(a,) -n Dn a + n 2n 0 -(a+l)Y, In (l+0 Wi) (3.4)

so that

na/aa L(a,O) =n/a - An (1 + 0 Wi) (3.5)i=lI

nand DIO L(a,0) = n/0 - (a+1) 7, wi/(l+ Owi) (3.6)i= 1"

For (3.5) we note that the maximum likelihood estimator of a

n
arrle = (3.7)n

On (I + 0 Wi)
i=l1

and the maximum likelihood estimator of 0 is the solution to

n n +. (7 W : .(38

2n n(I + 0Wi) I + 0W i

n n 2

One can show that 0 is positive if n X" wi2 > 2( wi) 2. (3.9)
i=l i=l

In such case 0 mle is obtained by solving
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(3.8) numerically.

A second estimator of (a, 0) is the method of moments (mine). Since E(W) = [0(a- 1)] 1

and E(W2 ) - 2[ e2 (a-1)(a-2)]- where a > 2, we have

amme = 1 + (3.10) and 8mmIie = (3.11)
7, wi 2 - 2(7 w12 ) m I W )2

provided that (3.9) holds. If (3.9) does not hold, then this estimator does not exist.

A third estimator was suggested by Berger (1983) in a different context. He suggested

estimating 0 a modified methods of moments estimator 0 ber = (a w)- 1, (3.12)

where w = 7, wi/n,

which is vised as the true value of 0 in the likelihood (3.4) so that the estimator of a is the solution

to

wi (a+1) wi
- On (1+ -) + =0 (3.13)

aw wa 1 +wi/(aw)

A final estimator is based on the STTOT plot. Let Ci = Aln(l-i/n) and Di =

9 n(1-Tn(W(i))/Tn(W(n))), i = 1, ... , n-I. if (3.2) holds, then we should have

Di = (1-1/a)C i, i = 1,..., n-l, (3.14)

so the value of a which minimizes

n-I
X (Di - (1-1/a) Ci)2 is a reasonable estimator of ai=lI

"Ci
2

The resulting estimator is als = C2 -C (3.15)
C Ci Di
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FIGURE 7 B
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which is in the parameter space if Z Cj2 > Z Cj Di.A better estimator should be obtained by

weighting the Di's differently since for i < j, Var (Di) < Var (Dj). The variance of D i depends on

the unkmown parameter a so we weight by the variance of Di computed under an assumed

exponential distribution. The variance of Di in that case is

i I
Vi i = I,-, n-I (3.16)

so that the weighted least squares estimator of a is

awls - C 2 N, if : Ci2/Vi > "CiDiVi. (3.17)

Ci2  CiD i

Vi  Vi

Once we have obtained a by either of the two least squares estimators, we substitute this value into

(3.6) and solve this equation numerically for Ol or 0 wls .

The condition I Ci2/Vi > I Ci DiN i includes a few more possible samples than the

condition (3.9) for the other three estimators. However, those samples which satisfy 7. Ci2/Vi >

i Ci D i N i for which (3.9) fails to obtain yield very large estimates of e. Since a reasonable

model for T when 0 and a are not estimable is the independent Weibull series system which has

system reliability very close to (3.1) when a is very large, this is not a problem. Figures 7a and 7b

are scaled total time on test plots from two simuilated samples of size 30 from (3.1) with a = 3, 0 =

I. Looking at figure 7a, we see that the estimated scaled total on test doesn't look too different

from the 450 so that an exponential model might not be unreasonable. For this data set only the

weighted least squares estimator exists and it yields aWLS = 45.33 and 0 = .0567. For the data in

figure 7b all estimates exist, and we have
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8mle -.93 amle = 2.98

e1u = .491 atm e -4.86

ber- .720 aber - 7.02

% -.739 als -3.58

Owls =.970 awls - 2.89

To study the properties of these estimators, a small scale Monte Carlo study was performed.

Random samples of size n = 15, 30,50,75, or 100 were generated with X1 + X2 = 3, b = 3, so 0

= I and a = 2, 3, 5. 1000 samples were generated for each combination of n and a. The bias,

standard deviation of the estimates and n, the number of samples where the estimator exists is

reported in table I for a, table 2 for 0, and in table 3 for an estimator of the system reliability

obtained from (3.1) at to- 9.085. The hue system reliability at to is .8255 when a = 2, .75 when a

= 3, and .619 when a - 5. Also reported in each table is the bias and standard deviation of the least

square and weighted least square estimators when they are restricted to those samples where the

other estimators exist

From these tables we note that Berger's modified estimator performs very poorly. Also the

weighted least squares estimator allows for estimation of parameters in many more samples when n

is small. In general the maximum likelihood estimator outperforms the other estimators, however,

when the weighted least squares estimator is restricted to those samples where the maximum

likelihood estimator exists, this estimator performs much better when n is small. The somewhat

better performance of the MLE in terms of bias is deceptive since some of the estimates of a are less

than one, which implies that the mean system reiliability is infinite. Also the weighted least squares

estimator of system reliability seems to outperform the other estimators of the system reliability in

spite of its relatively poor performance as an estimator of 0. Our recommendation is to use the

weighted least squares estimator since it more often provides estimators of the relevant parameters

and is somewhat easier to compute.
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3'., 916 2.8 20. 953 4.7 37. SY7 6.4 52. 916 6.1 32. 916 1o.0 52.
912 1.1 3. 857 5.4 51.

5 9: 9'9 5.e 114. 989 1.l 10. 936 4.0 16. 979 8.5 13). 9;; 1.4 241.
916 1.0 3. 952 3.5 12.

. '. 4. Y98 1.0 5. 974 2.4 tz. 996 2.2 4. 996 4.3 .
996 1.0 5. 972 2.4 12.

99.. 95.1 3. t000 1.7 35. 989 1.5 9. 999 1.; 5. 9 .7l 5.
999 0.6 2. 989 1.5 9.

13 6. 7.3 39. 753 36.4 843. 653 13.1 149. 643 16.9 77. 643 16.0 114.
636 1.3 9. 573 10.7 159.

3S. 89 5.7 3). 870 13.8 141. 768 11.9 100. a1( 9.9 104. 8 09 17./ 66.
804 1.8 6. 731 11.1 102.

3K" 91 3.6 18. q35 6.9 65. 864 6.4 33. q16 6.6 25. ~16 i ,5 4'.
912 2.9 29. 851 5,.7 32.

-75 961 2.5 14. 977 2.8 17. 925 11.6 144. 963 4.7 24. 963 ;. 38.
958 1.3 5. 923 11.6 144.

7 )0 q17 1.7 7. 989 2.1 12. 9t6 3.7 19. 978 3.0 9. 976 s. S.
978 1., 5. 952 3.6 19.

-,3 ,. 38.7 573. 665 8.2 53. 558 30.3 493. 522 69.6 925. 522 112.9 1505.
516 -,'.7 5. 458 1.8 15.

Cl, ; u.4 148. 752 9.Z 68. 669 13.7 109. 674 l1./ 202. 674 56.' 347.
660 3.2 29. 6)1 8.4 86.

ca' 8ul 7.6 39. 85Q 9. 0 97. 76 13.4 88. 60 1 11.4 52. So1 23. 91.
?87 2.0 10. 722 8.6 56.

3 IZ.E 139. 415 S.f) 94. 827 3.6 22. 89. 13.3 122. 89: 89 -,.
878 2.9 16. 714 5.8 20.

8 89. 9.5 14. 913 19.6 307. 8. 11.0 S1. I. , , . .. .1 .
8/' 19 .7 Z9. u 9.5 I .

.... i I I II l I III l i l I I l l II ~ l l l " i I | I 0



BIAS AND STANOARD DEV!Af(IONU(D) OF ESTIMATORS OF e
1LMInUM WEIGHTED METHOD UF

LIVELIHOOD LEAST SQUARES LEAS SUUA:ES MOMENTS bEPQER METHOD

A. N m BIAS SO M DJIAS So M LI1AS SD Ii BIAS '3D, 1. BIAS SO

15 769 0.356 1.702 852 -.102 0.742 782 -.192 0.729 71) --.683 . 7 -o t.2) 2
766 -.027 0.025 715 -.156 0.701

2 30 916 0.112 0.919 953 -.135 0.580 977 -.254 0.586 916 -.623 0.192 916 - "'98 t. 9'f
912 -.100 0.567 957 -.239 0.584

2 50 979 0.016 0.648 989 -.126 0.492' 956 -.263 0.514 979 -.575 0.184 979 - 9.'.79

976 -.115 0.486 952 -.260 0.513
? 75 996 -.025 0.522 998 -. 125 0.4.32 9714 -.247 0.475 996 -.541 0.174 996 -.790 0.)65

996 -.124 0.431 972 -.246 0.414
!,)Q 999 -.019 i).437 14)00 -.101 -. 381 989 -. 216 0.42- 999 -. 5u8 0.15 9 78t u. )5

1000 --.101 0.381 989 -.216 0.425
:3 642 0.691 1.900 753 0.210 1.049 653 0.119 1.031 683 -.513 0.348 64- -. 705 0.20:

636 0.39) 1.040 573 0.245 1.039
7, 809 v.175 1.049 870 0.000 0.757 769 -.096 0. /45 810 -.46q 0. 7.3 6,) ; , ':'oL

804 0.074 0.740 731 -.057 0.743
- 16 .97 5 0.766 935 -.012 0.618 664 -. 2 0.663 916 -.404 0. 3. 916 718 0.13.

912 0.011 0.609 951 -.100 0.660
75 963 0).030 0.624 977 -.027 0.555 925 -.144 0.603 963 -.375 0.322 963 .717 0. 120

958 -. 01V 0.546 923 - 142 0.603
10,'. 978 -.928 0.515 989 -.075 0.472 956 -.165 o.511 978 -.345 0.297 978 -.716 u.104

978 -.055 0.465 952 -.161 0.509
5 15 522 1.452 3.109 665 0.715 1.609 558 0.578 1,536 522 --. 238 9.601 522 -. t4o 0.74E

516 1.084 1.599 458 0.827 1.561
5 S0 674 0.558 1.609 752 0.366 1.118 669 0.180 1.026 674 -. 199 0.576 6'4 -. '584 0".4g.

661) ; . 5 1.104 601 0.286 1.029
69.' 8''1 v.256 1.559 850 0.184 0.869 756 9.105 0.863 801 -. 1Q3 :."41 80t 1 - I '."

787 0.26' 0.850 722 i'. 150 0,858
, 99 0. 12 9.81.' 915 0.112 t.72 82' 09 , 14 f). 747 " .8S' ... '.' : i< . .

678 ' '. ,5: 15 :. o . 4 O, '44
v ' v.1):. 0.683 91: . 0.U2. 0.62 E . - .,)64 ,.666 891, .2196 4 4 - .-.44 .

879 (',05 ',615 821 -.1050 (.663

.I



TABLE 3
BIAS AND STANDARD DEVIATION(SD) OF ESTIMATORS OF SYSTEM RELIABILIlY Al T=.?Q85

MAXIMUM WEIGHTED METHOD OF
LIKELIHOOD LEAST SQUARES LEAST SQUARES MOMENTS SEFk'J.ER S MEIHOD

~ 4 N BA BIAS IA SD N BAS SO N BIAS SD N I SD

15/'-0 .6,47 82-'.004 .058i6 1;62 0.6;2 .0588 -ib ().1)37 *o).Q64; *'.463

766 -.006 .0577 715 0.002 .0586
; 0 916 -. 005 .0473 953 v. '"02 .0424 877 0.010 .0434 916 0.031 .035* 91. 0.0)69 .0.U ,

912 0.001 .0426 85? 0.009 .0434
5Q 4!9 -.001 .0372 989 0.003 .0349 956 OO1 .0359 917 0 .05 .o U304v 9/9 .o99 ,o2>

976 0.003 .0348 952 0.010 .0359
, 5 996 O.000 .02YO 998 0.004 .0274 9/4 0.016) .o292 99c o.j'4 .oz44 9- J.0/'1 .v238

996 0.003 .0274 972 0.010 .0293
1 999 .. 1) 1 .24 1 0() 0.004 .0234 989 0.010 .0248 99"; 1.4. 022: .0...'4

999 0.004 .0233 969 0.010 .0248
S 642 -.018 .0815 753 -.010 .0767 653 -.406 .0748 641 9.'K-i .U. b61 ()6 .. ,16

636 -.015 .0764 573 -.009 .0751
30 609 -.007 .0577 870 -.003 .0552 769 0.002 .0531 811) 0.024 0490 801 o.062 .047,

804 -.006 .0544 731 0.001 .0550
. 50 916 -.003 .0429 935 -.001 .0412 864 0.005 .0431 916 0.022 .').6 916 9 ).066 .0.74Q

912 -.002 .0411 851 0.005 .0432
" 75 963 -.001. .0372 977 0.0o0 .0356 925 0.007 .0374 963 0.o2I 03 9 7.3. 1i. 67 .0Z13

958 0.000 .0357 923 0.007 .0375
3 100 9786 0.001 .0309 989 0.002 .0299 956 0.006 .0311 978 0.019 .0267 97b 0.067 .0261

978 0.002 .0299 952 0.008 .0312
5 1 , 520 -.029 .1)11 665 -.024 .0967 558 -.020 .0977 52' Q.012 . . v.6 2 o 54 ,0.921

516 -.030 .0968 458 -.022 .0968 "
.) 674 -.;)'2 .0691 752 -.020 .0674 669 -.013 .0651 674 Q.,)01 .961 - '4 i.045 .060E

660 -.027 .0665 601 -.016 .0652
5 0 80 -.006 0545 8.50 -.006 .0530 756 -.002 .0532 8f) 1 0 1 . Q .6494 8-.11 '.. . 04' ,

78/ -. 0 oS 028 722 -.002 .0535
5' 593 -. 003 .0442 915 -.005 o0436 827 -.002 .0431 893 Q. Q0 .04.6 89. 01 .0.73

879 -.006 .0430 814 -.002 .0432
' 1 89C " .'02. (1375 ' ' - .01)1 .0392 a35, 0.003 .0380 8". ". .'. , . . .,

879 - Q S90 821 0.o03 .Q A . I

e
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ESTIMATING RELIABILITY FOR BIVAR lATE
EXPONENTIAL DISTRIBUTIONS

By JOHN P. KLEIW

The Ohio State University, Columbus

and

AMI P. BASU"*
University of Mse"Ouri, Columbia

SUMMARY. The problem of estimating reliability for the bivauiate exponential distri-
butions of Bokand Besn (1974) and Marshal and 01kmi (1967) is considered. For Book and
Besn's me" a -- nu variance, unbiased estimsator of the joint survival function is obtained
in the case of idmntmloaly distributed inarginals. For the non-idmnticslly distributed came the
performance of the maximumi likeliood estimator and the jaokknified maimumn likeliood est-
mator is studied. For Mfarshall and 01kmn's model the performance of several different pam-
meter ekstiars and bias reduction techniques for estimating joint reliability are considered.

Lot , Y have either the bivariate exponential distribution (ByE) of
Marshall and 01kin (1987) or the absolutely continuous bivaniate exponential
distribution (ACBVE) of Block and Basu (1974). These two distributions
have found considerable use as models for both physical and biological systems.
The problem of interest is to estimate the joint reliability function,

P(x, y) - P(X > x, Y > y), for each of these two distrbutions. A natural

estimator of 7F(x, y) is obtained by substituting in the appropriate expression

for P(--, y) good estimators of the model parameters'. Often, as see in Pugh
L (1983), Basu (1984) or Basu and El Mawaziny (1978), such estimators can be

considerably biased. We wish to obtain reduced biased estimators of F(z, y)
for both the BVE and ACBVE distributions.

In Section 2 this estimation problem is considered for the ACBVE. In
the cas. of identically distributed marginals, using the Rao-Blackwell and the

AMS (1950) aubi cdaseifoa*ion: 62N08

Nor word: Miinimm variance iznbiesed estimatous; Bivariate exponential; Reliability;
axsimuam likeliood estimator; Iaokimife; Survival function
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"rahmann-Scheffd theorems we obtain minimum variance unbiased estimators

(UMVUE) of (x,y). In the case of non-identically distributed magials
this approach fals since there are no complete sufficient statistics. Here we

vin.stigate the performance of the maximum likelihood estimator as well as
the jackknifed maximum likelihood estimator.

In Section 3 we consider the estimation of P(x, y) for the BYE. Again
there wre no complete sufficient statistics so no minimum variance unbiased

estimators can be obtained. Several different methods for estimating para-
meters se considered. For each estimation procedure we consider several
bias reduction techniques.

2. AwOLUTUmLY OOmTXUOUS xvABITz zxPoxNu L

2.1 Infodudion. Let (X, Y) have the absolutely continuous bivariate
exponential distribution of Block and Bsau (1974) with parameters A1, A > 0,
A1 ) 0((X, Y) -- ACBVE(A1 , At, An)). This distribution is closely related
to the bivariate exponential of Freund (1961). It has been used by Gross,
Clark and Lui (1971) and Gross (1978) to model the lifetimes of two organ
systems and by Gross and Lam (1981) for modeling paired survival time data
such as survival of a tumor remission when a patient receives two types of
treatment.

For this model the joint reliability function is

F(m, y) = (,.., exp(-ALX-A#-A max(w, y))

A 1 ) exp(-A max(x, y)), for z, y > 0, .(2.1.1)

with A - AI+A+Als.

This distribution has the bivariate loss of memory property (LMP)
defined by Block and Basu (1974). It is the absolutely continuous part of
the Marshall and Olkin (1967) bivariate exponential.

We shall consider two cases for estimating F(x, y), one where the marg'nals
are identically distributed and the general model.

2.2 EOa maroakis. Consider the model (2.1.1) with A, = A,
and An = . Let (za:,y), y).... (x, ys) be a random sample from (2.1.1). Let
U17 = max(xi, yt) and Us - Z(a%+y). Mehrotra and Michalek (1976) show



that (Ul, Ug) i s acomplete sufficient statistic for ( ) TheMI of =.f
e given by

a~t(,,~~1 21  ,) D~ 2 1  (2.2.1)

These estimators are biased by a factor of a/(n-l) so the estimators

an -- a the UMVUE of a and 6. Two natural

estimator. of -(x, y) ae obtained by sustituting either (t, 0) or (df, f) in (L ).
We now use the method proposed by BDau (1W4) to obtain the VMVUZ

of .(z, Y).

Define
1i ifX>z, lY>y

Y : X, 1... (2.2.2)
0 otherwise.

Clearly O(z, y : X, Y) is an unbiased estimator of (z, Y) based on a random
sample of size one from a ACBVE (,, i, 8). By the Rao-Blackwell and

Lehmann-Scheff6 theorems the estimator IP(X, Y) = B(O(z, /; X, Y) I w%)

is the UMVUE of P(z, V).
To simplify the calculations let T = U-U and V = 2U--Us, that is

T - Z iin(X,, Y,) and V = max(X, Y+- £ in(X,, YI). From Mehrotra
and Michalek (1976), the joining density of (T, V) is

(2a-)(a+A - - exp(-(2a+#)-(a+)), 9, f > 0
P, V) U-1 1

... (2.2.3)
.0 otherwise.

Now split the sample of size n into two independent subsamples of sizes
one and n 1, respectively. Let (Z,, Z.) denote the sample of size one and

let TI, V, denote the statistics T and V defined on the remaining n- 1 observa-
tions. The joint density of (Z, , Z, T , VI) is

C(2x+M)(a+fl)* f*2rtI p(2a.ta.8v
2[(n-2) II' ~ 1 f2  z

-ah -(a+p8 ] if ZI < Zi
f(z1, Z2, , ,) = ... (2.2.4)I (2,z+8 ( a+ #)% Vi- ,*- exp[-(2 + 0 2t1 ( +W 1v,

2[(n-2) I]s
-(z+p) 1- ,] if 2 <2Z

i _i | • - i i_ _ _ 7
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for 91, V,> 0.

Clearly V =V,+max(z1 , Zs)-min(Z1 , Z2) and r 2 ,+min(Z,, Za). -
Hence the joint density of (Z,, Z2, T, V) is

ftz,*z 1 vzzse,,t2a,8-(v))v

for 0 < V, t; 0 < za < t; z2 < Z, < V+z,-..(225

Thus the conditional distribution of Z,, Z, given T, V is

j(z,zI T=t, V=v)= .j... (2.2.6)

1(n- 1)S(g-Z,)02(V-Z, +,)S

I ~Z2 < h < V+Z1.

To find E(O(x, y; Z1, Z2) I T =t, V = v) consider three caas-

Cast 1: t>x=3/>O. Here,

= 2 -f1()1V 2 Z)'dzdz, = (- (i..(2.2.7)

Came 2: x<y<. Here,

* (O(z, Y; 21, Z) I T = t V= v)

I I Al, Z2 It, v)dz,dZ+ £ f(Z21,Z2I t, v)dz~dzs
*1 {(A 2j& :> Y- 2 >Y) &1z. 2:2) : t<21<1, Y<r2)

= \%3 1 (n~)(tz,)S(V~,~Z)N'dzgdzl\ 2

k- (n- 1) k

.. (2.2.8)

B 3-7
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Cae 3: t>x>y>0. By symmetry
W(O(X, Y; Z1, ZS) I T - $, V =V)

t1s" - 0 - (n-tk-i)

... (2.2.9)

2.3 Unequal marginaI8. When (X, Y) is ACBVE (A,, As, A12) with A,
not known to be equal to As there does not exist a set of complete, sufficient
statistics for (A,, As, A12). Hence, the technique described in Section 2.2
fails. Maximum likelihood estimators of (A1, A, As) are obtained numeri-
cally by maximizing the likelihood function as described in Block and Basu

(1974). The maximum likelihood estimator, FP(, y) of F(z, y) is obtained
by substituting these estimators into (2.1.1).

For small sample sizes, this estimator may be highly biased. To reduce
this bias we consider the jackknifed version of the MLE estimator. This

estimator is constructed as follows : Let'F,!1 (x, y) be the MLE of F(x, y)
based on the subsample of size n-1 obtained by deleting the j-th observation

from the original sample. The jackknifed version of F(x, y) is
n , (n- 1  (,) ... (2.3.1)

n T A,

Miller (1974) shows that this estimator removes the n--th order term in the

expansion of the bias of F(z, y).

To study the performance of the MLE and the jackknifed MLE of F(z, y),
a simulation study was performed. For various values of A1, A2, %, and n,
500 ACBVE samples were generated by the method of Friday and Patil

(1977). Values of (x, y) were picked so that IF(x, y) = .9. The study showed
that the jackknifed maximum likelihood estimator had significantly smaller
bias than the MLE. For sample sizes of 10 or larger, the bias of this estimator
is not statistically different from zero. However, the jackknifed MLE has
a slightly larger mean squared error than the MLE in all cases considered.

3. BrvABUTx exPoNzNTiAL

3.1 Parameter estimation. We say (X, Y) follows the bivariate expo-
nential distribution of Marshall and Olkm (1967) with parameters A, > 0,
As > 0, and A12 > 0((X, Y) is BVE (A,, A2, Ala)) if the joint survival function is

P(X > x, Y > y) = F(z, y) = exp(-A,.X-A2Y-Al, max(x, y)) ... (3.1.1)
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for x > y > 0. This distribution is not absolutely -continuous 'since
P(X-=y)-=A 1, (A,+A2±A 1 ). The marginals are exponential as is znin(X, 7).
This is the only bivariate distribution with exponential marginals and the
loss of memory property (LMP) as defined in Block and Basu (1974). I

To estimate Ai, As, An, based on a random sample (XI, F',), ... , (X,,, Y',),
lot %~, %, n, be the number of observations with Xj less, greater, and equal
to Ys, respectively. Let T = E max(XI, F'4), Sx = EXI, Sy -2 Ys. Bhatta-
charyya and Johnson (1971) show that (%,, th, t, *,, a ) are jointly minimal4 sufficient but not complete. Hence, the approach of Section 2.1 -cannot be -
applied. The maximum likelihood estimators are obtained by numerically

mxming the likelihood equations. Bhattacharyya and Johnson (1971)
obtain conditions under which the MLE exist, and show that these estimators
are asymptotically trivariate normal with mean (AIL, As, A1,).

Bemin, Bain and Higgins (1972) have obtained method of moments
estimators of the parameters. Proschan and Sullo (1976) obtained estimators
of the parameters by using a first iterate in the likelihood equations. Arnold
(i968) gives estimators of A1 based on n1~, a,, nu, and U = I min(Xi, Yf').
In the competing risks framework where only the minimum of X and Y' is
observed, these estimators are the unique iminimum variance unbiased esti-
mators of At. All of the above estimators are asymptotically trivariate
normal with mean (A,, As, A12).

3.2 Eaimation of fast pvobbilti. The problem of interest is to estimate

!(x, y) given by (3. 1. 1). A natural method of estimating (3. 1. 1) is to use
one of the above methods to estimate (A1, A2, A,.,) and substitute these esti-
mates in (3.1.1).

Several methods may be used to reduce the bias of these estimators.
The first approach is to expand the substitution estimator in a Ta~ylor series
about (A,, As, An,) keeping only second order terms. When E(It) = Aq, the:bias of the substitution estimator is approximately equal to

where _E(Psus3(x, y)) -m.F(x, y)[1 +as12]

a'2 = (Z, Yi, max(z, y))E~z, V, max(x, y) ~ 321

and Z in the appropriate covariance matrix of (A,, 3,, An,). This suggests a
reduced bias estimator of P(x, yi) given by

F2'3(X, Y) = F(x, y)f(1 +;412] .. (3.2.2)

'where 02 is an estimator of a4.
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A second approach to the bias of Psu,(x, y) is through asymptotic

theory. Note that In Psu(x, y) is asymptotically normal with mean

-Az-AW-A max(x, y) and variance a. Thus, for large n, srB(x, y)
has a log normal distribution and

E(F,,SE(x, y/)) -+ F(x, y)exp(o'/2) ... (3.2.3)

and V(iP,~,(z, Y))- (x, y))W2I(eu-l). This suggests a reduced bias esti-

mator of (x, y) given by

Fziv(z, y) = FIUB(x, y)exp(OY/2). ... (3.2.4)

A third method to reduce the bias of Pu,(x, y) is the jackknife as described
in Section 2.3.

To compee these estimators, a simulation study was performed. 500
BVE observations were generated for various combinations of n, A,, AL, A1..

Values of (x, y) were selected so that F(x, y) 9.

Several conclusions can be drawn from the study. First, for all bias
reduction techniques, those based on Arnold's estimators have a significantly
larger mean squared error but a smaller relative bias. Secondly, there appears
to be very little difference in the estimators based on the other three methods.
For Arnold's estimators, all three bias reduction techniques yield approxi-
mately unbiased estimators with comparable mean squared errors. For the
other methods, only the jackknifed estimator is approximately unbiased
due to bias of the estimators of the parameters themselves since first order
(bias) terms were neglected in the derivation of (3.2.2) and (3.2.4). The
expansions based on Arnold's estimators are correct since these estimators
of A,, A2 and %, are unbiased. Our recommendation is to jackknife either
the Proschan and Sullo estimator or the method of moments estimator since
these are computationally easier than the MLE and have the smallest bias
and mean square error of the three bias reduction methods.
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by

John P. Klein
Department of Statistics
The Ohio State University

and

Melvin L. Moeschberger
Department of Preventive Medicine

The Ohio State University

Key Words: Censoring. Parametric. Nonparametric, Product-Limit

Abstract: The problem of estimating the survivorship function.
R(tJ-P(T>t). arises frequently in both the engineering and biomedical
sciences. In many applications the data one sees are censored due to the
occurrence of some competing cause of failure such as withdrawal from the
study, failure from some cause not under study, etc. In the biomedical
sciences the distribution free estimator suggested by Kaplan and Meier
(JASA 1958) is routinely used, while in the engineering sciences a
parametric approach is more commonly used. In this report we study the
efficiency of these two techniques when a particular parametric model such --

as the exponential. Welbull. normal, log normal, exponential power.
Pareto. Gompertz, gamma, or bathtub shaped hazard distribution is assumed
under a variety of censoring schemes and underlying failure models. We
conclude that in most cases the parametric estimators outperform the
distribution free estimator. The results are particularly striking if the
Welbull forms of these estimators are used routinely.



I. Introduction

A common problem faced by the reliability analyst, as well as by the

biomedical researcher, is to estimate the reliability or survivorship

function R(x) = P(X>x) for the time, X of occurrence of some event. This

event may be time to failure of some system or time to failure of some

component or subsystem of a larger more complex system in engineering

applications. In biomedical applications, X may denote the time to death,

relapse or cure of a patient, or time to death from a given cause or

disease. Frequently, the observation of the event of interest is

precluded by the occurrence of a censoring event at a random time Y. This

censoring may be due to random observation periods or random entry into

the study for each individual test unit. Random censoring may also be due

to the failure of a system or individual due to an independent cause not

under study. This censoring may often be quite heavy and the sample size

on which inference is to be based quite small, particularly in the early

exploratory period of product design or testing of a new therapeutic

procedure.

Mathematically, the above problem is formulated as follows. Let X

and Y be independent positive random variables with reliability functions

R(x) P(XM>x) and G(y) = P(yay). respectively. We do not observe X and Y

directly but instead we observe T = minimum (X.Y) and

1= J1 if X < Y a failure

0 if X > Y a censored observation

Based on a random sample of size n we observe (T.IJ), j=1. ..... n.

Our goal is to estimate R(x).

There are two standard methodological approaches to estimating R(x)

in this framework. The first, which is used most commonly in biological
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and medical applications, Is the nonparametric approach of Kaplan and

Meier (1958). This estimator Is constructed as follows. Suppose that the

Ti's are ordered so that T1 < T2 < ... <Tn and the death times are

unique. The estimator Is defined by

(1.1) R(x) i f x < T1

II

A special note is needed to cover the case where the largest observation

is censored. Here Rk.(x) is undefined for t > T n . Efron (1967)

suggests defining Rk*(x) - 0 for t > T n however we follow Gill

(1980) who suggests estimating R (x) by Rk,(X) = R(tn) in this

case (see Guerts (1987)). Under very general conditions on R(x), G(y) and

an assumption of independence of X and Y, this estimator is consistent

(c.f. Peterson (1977) and Winter (1987)); a generalized maximum likelihood

estimator (c.f. Johansen (1978)); and converges weakly to a Gaussian

process (c.f. Aalen (1976)). However recent studies by Geurts (1985) for

nonproportional hazards censoring and Wellner (1985) (cf. Chen, Hollander

and Langberg (1982)) for proportional hazards censoring have shown that

for small sample sizes R is biased and that this bias is quite

large for heavy censoring at median to small values of R(t).

A second approach to estimating R(x) is the fully parametric maximum

likelihood approach which seems to be favored by researchers in the

engineering sciences. Here a plausible model, Ro (x;), where 0 =

(i .... ep) is a vector of unknown parameters, is postulated for

R(x). This model may, In some cases, be selected by some graphical

technique (c.f. Nelson (1982)) or based on some theoretical grounds.

Estimates of e are obtained by finding 9 which maximizes the

likelihood function
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(1.2) L(!) 11 h (T ;8) R (TI;9) where
1=1 0

h(x) = -d(ln R(x))/ dt Is the hazard function of X. The resulting

estimator of R(x) is RMLE(x) = R (x;8) which, under very

general regularity conditions, is asymptotically unbiased, consistent,

efficient, and normally distributed (c.f. Bain (1978)) 
if the model R

o

is properly selected. However its small sample properties and the

robustness of this estimator to misspecification of the model may be

suspect.

The goal of this paper is to explore the small and moderate sample

size performance of the nonparametric and parametric estimators of R(x)

under light to heavy censoring by means of a Monte Carlo study. For R0

we study the exponential, Welbull, normal, lognormal, exponential power,

log logistic, Pareto and Gompertz models. Data is simulated from a

variety of distributional shapes including those with constant,

increasing, decreasing, or bathtub or U shaped hazard functions.

II. Parametric Models for Reliability

In this section we describe the models used for R (.Ie) in our

Monte Carlo study. The first is the exponential distribution with

R (xI8) = exp (-x/0). This model, which has a constant hazard rate0

h(x) = 1/0 has been extensively used and studied in this context. For

example, Davis (1952) used this model to study the lifetimes of

manufactured items while Feigel and Zelen (1965)) suggest its use in

modeling survival or remission times for a chronic illness.

The second model we have considered Is the two parameter Weibull

distribution with reliability function R(xla,O) = exp (-(t/a) ),c,3>O.

This flexible model has been used in reliability (c.f. Weibull (1951)),
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medical (c.f. Whittemore and Altschuler (1976)). and animal (Pike (1966))

studies. It has great flexibility in that its hazard rate can be monotone

decreasing (0 < 1). constant (0 = 1). or monotone increasing (A >1).

The next model considered is the normal distribution with mean p and

2variance a . This model, which has an increasing hazard rate. is

included due to its naive use by many not versed in the reliability

literature. We can note, however, that Davis (1952) and Barlow and

P usctU1 (1965) have suggested it as a model for lifetime data. We also

coh. -i- the related log normal distribution with reliability function

R (xla.s) = 1-. ((In x-a)/s)), s > o. -- < a < -. This distribution haso0

a humpshaped hazard rate. Its use in life studies has been suggested by a

number of researchers including Nelson and Hahn (1972) in an engineering

context and Whittemore and Altschuler (1976) in a medical context.

Estimates of g and a or a and s were obtained by the EM algorithm (see

Lawless (1982)).

The next distribution considered was the exponential power

distribution proposed by Smith and Bain (1975). This distribution has

reliability function.

R(xla.0) exp (1-e (x/a) )
, x. a, 0 > o

A-I 0 0
and hazard rate h(x) = 0 x exp((x/) )/a

It was chosen due to its flexibility since it allows for U shaped hazard

rates when 3 < 1 and monotone increasing hazard rates when A > 1.

The sixth distribution studied is the log logistic distribution with

reliability function R(xia.0) = 1/(14ax) j. a,* > o. This model, with

hazard rate ax -1l/i+ax ), behaves like the log normal with a

humpshaped hazard rate for 0 > I and has a monotone decreasing hazard rate

for 0 < 1.
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The seventh distribution considered is the Pareto. with reliability

function Rjxla,p) = (l+ax)- . x, a. P > o, and hazard rate

h(x) = $a/(l+ax) which is strictly decreasing. This model arises in

modeling a heterogeneous exponential population as follows . Suppose that

X has an exponential distribution with random hazard rate A. If A follows

a gamma distribution with density g(A) = 20- 1 exp (-A /cx/(ar( ) then

(unconditionally) X has a Pareto distribution. Maximum likelihood

estimation of a and $ are on the boundary of the parameter space whenever

n n n 2
(E I ) Z (T i1) 2 -2 (Z (T.I.)) 0
j=l j=1 j=l <
in which case the estimated reliability reduces to that of the exponential

(c.f. Lee and Klein (1988)).

The final distribution considered is the Gompertz distribution with

reliability function R (xja,p) = exp (a(l-eXi)/0). a, 0. x > o which

has an exponentially increasing hazard rate h(x) = ae . This model has

been used extensively in modeling mortality data (see Elandt-Johnson and

Johnson (1980) and Gehan and Siddiqui (1973)).

3. Simulation Study

To study the performance of the maximum likelihood estimators of R(x)

for the above models and of the Kaplan-Meier Product Limit Estimator 1000

samples of size 25 and 50. with 0%. 10%. 30%. or 50% of each sample being

randomly censored, were generated from the following populations of

failure times: (In each case we fixed the mean life at 1 to make

comparisons easier).

1) exponential:

2) Weibull with .5, 2, 4. 8;

3) normal with a = .05, .1. .15;

4) log normal with s = .37. .51. .61;
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5) exponential power with = .25, .50, 1, 8;

7) Pareto with =1. 2, 4;

8) Gompertz with = .5, 1. 2;

9) gamma distribution with shape parameter = .5, 2, 4, 8;

10) A bathtub shape hazard distribution proposed by Glaser (1980). which

is a mixture of a gamma with shape parameter 3 with probability p and

an exponential (with the same scale parameter) with probability

q = (l-p), p = .15, .25. .4, and .6; and

11) log logistic with = 2, 3, 4.

Censoring random variables were generated from an exponential distribution

with the appropriate parameter for all death distributions. Additionally,

proportional hazards censoring was used for the Weibull and exponential

power distribution. Exponential censoring will give a censoring pattern

.with heavy early censoring for distributions with an increasing hazard

rate and heavy late censoring for distributions with a decreasing failure

rate. For bathtub shaped hazard rates the censoring will increase to a

maximum and then become light for large observed times.

As a measure of the performance of the eight estimators of R(t) we

consider an estimator of the integrated mean squared error defined as

(3.1)
A2

IMSE (R) = E (f0 (R(t) - R(t))2 dt)

where R(t) is the true reliability function. We estimate this quantity by

(3.2)
1000 tEINSE (R) = £ f (R9(5 --EIMS (Ro (Rift - R(t)) 2  dt/1O00

where P(T<tp) = p and R (x) is the estimator of survival on the

jth simulation. The results, reported in Tables 1-8, are the values of

the ratio of integrated mean square error when the product limit estimator

is used to the given maximum likelihood method (i.e.,

EIMSE(KM)/EIMSE(MLE)), so that a value
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greater than one implies that the corresponding likelihood method performs

better than the Kaplan-Meier estimator. In Figures 1-7 we present plots

of the relative mean squared error (MSE(KM)/MSE(MLE)) at the 5th to 95th

percentiles of the true distribution for a set of representative

distributions based on a sample of size 25 with 30 percent censoring.

These distributions are the exponential, with constant hazard rate.

(Figure 1); the gamma with shape parameter .5 (Figure 2). with a

decreasing hazard rate; the Weibull with B = 8 (Figure 3) and the Gompertz

with P = 2 (Figure 4), both with increasing hazard rate; the log-logistic

with 0 = 3 (Figure 5), which has a humpshaped hazard rate: and Glaser's

bathtub shape hazard distribution with p = .6 (Figure 6) and the

exponential power distribution with = .25 (Figure 7). both with U shape

hazard rates. Exponential censoring was used throughout.

4. Discussion

Miller (1983) noted that. asymptotically, the efficiency of the

Kaplan-Meier estimator is quite low compared to the parametric maximum

likelihood estimator under the assumption the parametric estimation model

is correctly chosen. He showed that this was particularly true for high

censoring propor*ions and reliabilities estimated in either tail. Of

course when the parametric model is chosen incorrectly the maximum

likelihood estimator is asymptotically inefficient. Our results show that

for small to moderate sample sizes the parametric estimators outperform

the Kaplan-Meier estimator not only when the parametric model is chosen

correctly but also for families of models with similar shapes. The

parametric models tend to do even better as the percentage of censored

observations increases, reflecting the higher bias of the product limit

estimator.
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Specific recommendations can be made hased on these tables and graphs

for the use of certain parametric models. First, notice the poor

performance of the Pareto maximum likelihood estimator. Its integrated

mean squared error is worse than that of the Kaplan-Meier estimate in 286

out of 304 cases. This may be due, in part, to the Instability of its

parameter estimates. The exponential KILE also does poorly except for

Glaser's bathtub shape distribution and the ex9onential. Its use as a

routine model for reliability is not indicated by these results. For the

remaining models considered, the results are mixed. For distributions

with a decreasing hazard the Weibull and log logistic KLE's seem to

perform well. The exponential power distribution MLE performs well for

the Weibull and gamma models with A < 1. The use of the Gompertz, normal

and log normal MLE's is clearly not indicated. For distributions with a

bathtub shaped hazard rate (Glaser's distribution, exponential power

distribution with A < 1) the Welbull and the exponential power

distributions outperform the Kaplan-Meier estimator, while the remaining

distributions do not. For humpshaped hazard rate distributions (log

normal, log logistic) the use of the log logistic or log normal MLE is

indicated. One should note the relatively poor performance of the Weibull

MLE here. The use of the log logistic is. perhaps, indicated due to its

simpler computation form.

For distributions with an increasing failure rate the picture is not

so clear cut. The Weibull MLE outperforms the product limit estimator

except when the true model is normal or Gompertz with an extremely steep

hazard rate (A - 2). The exponential power distribution does well except

for normal data. The Gompertz does well except for normal data and for

Welbull data with a relatively flat hazard rate (A = 2). The log normal
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and log logistic XLE's provide a reasonable estimator of the reliability

when the data is Weibull or normal. The Gompertz MLE is good for

distributions with a steep hazard rate such as the Gompertz. exponential

power distribution and Weibull with shave parameter 8. The estimator

which most consistently outperforms the Kaplan-Meier estimator for

increasing hazard rate distributions is the Weibull which wins in 131 of

142 cases considered.

The above discussion suggests that a statistician armed with the

Weibull, log logistic and exponential power distribution MLE's can provide

better estimates of the reliability function than one armed only with the

Kaplan-Meier estimator. By a preliminary graphical look at the hazard

rate (c.f. Nelson (1982)) he or she can get a crude idea of shape of the

hazard rate and pick the most appropriate model of these three.
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TABLE I - EXPONENTIAL MLE

SAMPLE SIZE 25 SAMPLE SIZE 50
DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED
OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%
EXPONENTIAL EXP 1.96 1.91 2.11 2.85 1.99 1.92 2.05 2.84
WEIBULL.B-0.50 EXP 0.26 0.44 1.10 3.17 0.03 0.41 0.62 2.03
WEIBULLB-2.00 EXP 0.29 0.34 0.47 0.61 0.16 0.18 0.23 0.32
WEIBULL.B-4.00 EXP 0.06 0.07 0.10 0.16 0.16 0.03 0.05 0.08
WBIBULLB-8.00 EXP 0.02 0.03 0.04 0.06 0.01 0.01 0.02 0.03
WEIBULL.B-0.50 WEI 0.35 0.66 1.44 0.21 0.40 0.85
WEIBULL.B-2.00 WEI 0.34 0.45 0.58 0.18 0.25 0.34
WEIBULL.B-4.00 WEI 0.07 0.11 0.19 0.03 0.05 0.10
WEIBULLB-8.00 WEI 0.03 0.04 0.08 0.01 0.02 0.04
NORMALv-0.05 EXP 0.01 0.01 0.02 0.03 0.00 0.01 0.01 0.02
NORKALa-O.iO EXP 0.02 0.02 0.03 0.05 0.01 0.01 0.01 0.02
NORMALo-0.15 EXP 0.02 0.03 0.04 0.07 0.01 0.01 0.02 0.03
LN NORMAL.S-.37 EXP 0.09 0.10 0.15 0.21 0.04 0.05 0.07 0.10
LN NORMAL.S-.51 EXP 0.20 0.23 0.29 0.38 0.10 0.12 0.15 0.21
LN NORMAL.S=.61 EXP 0.34 0.38 0.48 0.58 0.18 0.20 0.26 0.32
EP.B=0.50 EXP 0.93 0.98 1.29 2.54 0.63 0.67 0.89 1.94
EPB-1.00 EXP 1.08 1.31 1.49 1.67 0.66 0.76 1.04 1.17
EP.B=8.00 EXP 0.02 0.02 0.03 0.06 0.01 0.01 0.02 0.03
EPB=0.25 EP 0.24 0.50 1.26 0.14 0.28 0.67
EP.B=0.50 EP 0.97 1.22 1.82 0.69 0.84 1.30
EPB=1.00 EP 1.21 1.42 1.54 0.78 1.00 1.23
EP.B=8.00 EP 0.02 0;03 0.07 0.01 0.02 0.03
EPB-0.25 EXP 0.19 0.31 1.04 3.32 0.11 0.17 0.62 2.50
PARETO.B-1.00 EXP 0.34 0.70 1.56 3.86 0.22 0.52 1.11 2.76
PARETOB=2.00 EXP 0.72 1.02 1.73 3.48 0.59 0.80 1.34 2.77
PARETO,B=4.00 EXP 1.12 1.43 1.87 3.23 0.99 1.20 1.58 2.98
GONPERTZ,B-0.50 EXP 1.31 1.40 1.62 1.75 0.82 0.97 1.17 1.39
GOMPERTZ.B=1.00 EXP 0.61 0.71 0.92 1.14 0.32 0.38 0.53 0.70
GOMPERTZ.B=2.00 EXP 0.22 0.28 0.37 0.55 0.11 0.14 0.20 0.29
GAMMA.B-0.50 EXP 0.66 0.81 1.22 2.74 0.44 0.52 0.82 1.94
GAMMA.B-2.00 EXP 2.59 0.87 1.00 1.12 2.46 0.50 0.61 0.89
GAMA.B-4.00 EXP 0.53 0.24 0.32 0.43 0.49 0.12 0.17 0.23
GAMMA,B-8.00 EXP 1.15 0.71 0.14 0.20 1.15 0.05 0.07 0.10
BATHTUB.P-0.15 EXP 1.83 1.88 1.93 2.95 1.87 1.76 1.89 2.89
BATHTUB.P=0.25 EXP 1.95 1.88 2.00 2.64 1.90 1.90 2.01 2.91
BATHTUB.P=0.40 EXP 2.09 2.07 2.04 2.49 1.97 2.00 1.99 2.47
BATHTUB.P=0.60 EXP 1.64 1.71 1.82 1.96 1.18 1.29 1.47 1.68
LN LOGISTIC,B= 2. EXP 0.62 0.80 1.18 1.56 0.37 0.59 0.86 1.21
LN LOGISTIC.B= 3. EXP 0.27 0.30 0.39 0.46 0.15 0.16 0.21 0.27
LN LOGISTICB= 4. EXP 0.12 0.14 0.19 0.25 0.06 0.07 0.09 0.14



TABLE 2 - WEIBULL NLE

SAMPLE SIZE 25 SAMPLE SIZE 50

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED
OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%

EXPONENTIAL EXP 1.49 1.51 1.67 2.13 1.51 1.52 1.66 2.15

WEIBULL.B-0.50 EXP 1.49 1.55 2.15 4.60 1.51 1.53 2.38 5.76

WEIBULL.B-2.00 EXP 1.51 1.52 1.56 1.67 1.55 1.53 1.61 1.69

WEIBULL.B-4.00 EXP 1.61 1.61 1.54 1.62 1.65 1.64 1.63 1.60

WEIBULL.B-8.0O EXP 1.67 1.68 1.71 1.67 1.80 1.77 1.70 1.72

WEIBULL.B-0.50 WEI 1.57 1.70 2.64 1.59 1.72 2.50

WEIBULL.B-2.00 WEI 1.53 1.63 1.91 1.52 1.59 1.96

WEIBULLB-4.00 WEI 1.60 1.66 1.84 1.62 1.63 1.84

WEIBULL,B=8.00 WEI 1.71 1.65 1.82 1.67 1.73 1.77

NORMAL.o-O.05 EXP 0.82 0.95 1.14 1.31 0.49 0.54 0.66 0.90
NOR AL,o-0.10 UXP 1.12 1.16 1.37 1.56 0.79 0.85 0.99 1.22

NORMAL,a-0.15 EXP 1.30 1.40 1.46 1.56 1.08 1.13 1.25 1.40

LN NORMALS-.37 EXP 0.98 1.01 1.13 1.26 0.71 0.77 0.86 1.04

LN NORMAL,S-.51 EXP 0.97 1.06 1.15 1.30 0.75 0.81 0.95 1.15

LN NORMAL,S-.61 EXP 1.02 1.01 1.16 1.39 0.77 0.83 0.99 1.23

EP,B-0.25 EXP 1.75 1.60 2.19 4.11 1.67 1.50 2.18 5.36

EP,B-0.50 EXP 1.50 1.57 1.69 2.33 1.43 1.43 1.58 2.34

EP.B=1.O0 EXP 1.38 1.47 1.62 1.83 1.29 1.33 1.57 1.67

EP,B=8.O0 EXP 1.60 1.50 1.68 1.60 1.34 1.41 1.51 1.52

EP.B=0.25 EP 1.75 1.71 2.12 1.61 1.66 1.80

EPB=0.50 EP 1.52 1.70 1.93 1.52 1.53 1.80

EP.B-1.00 EP 1.42 1.59 1.73 1.40 1.46 1.74

EP.B-8.00 EP 1.49 1.62 1.69 1.41 1.52 1.55
PARETO.B-1.00 EXP 1.04 1.21 1.66 3.14 0.88 1.11 1.50 2.95

PARETOB-2.00 EXP 1.20 1.31 1.63 2.60 1.20 1.21 1.47 2.47

PARETOB-4.00 EXP 1.34 1.43 1.63 2.42 1.31 1.34 1.51 2.26

GOMPERTZ,B-0.50 EXP 1.42 1.45 1.59 1.82 1.33 1.43 1.53 1.70

GOMPERTZ.B-1.00 EXP 1.30 1.30 1.44 1.62 1.07 1.12 1.26 1.56

GOMPERTZ.B-2.00 EXP 1.09 1.14 1.25 1.42 0.91 0.95 1.04 1.25

GAMMA.B-0.50 EXP 1.54 1.51 1.73 2.85 1.52 1.55 1.69 2.55

GAIA,B-2.00 EXP 1.42 1.43 1.56 1.68 1.41 1.39 1.47 1.66

GAHKA.B-4.00 EXP 1.38 1.41 1.43 1.56 1.26 1.27 1.34 1.43

GAMMA,B-8.00 EXP 1.28 1.30 1.37 1.42 1.06 1.08 1.23 1.34

BATHTUB,P-0.15 EXP 1,47 1.52 1.62 2.29 1.60 1.51 1.63 2.23

BATHTUB,P=0.25 EXP 1.50 1.51 1.65 2.10 1.51 1.56 1.71 2.30

BATHTUB,P=0.40 EXP 1.50 1.53 1.67 2.02 1.47 1.54 1.66 2.03
BATHTUBP=0.60 EXP 1.43 1.49 1.59 1.77 1.38 1.41 1.51 1.70
LN LOGISTICB= 2. EXP 0.77 0.87 1.18 1.74 0.51 0.67 0.98 1.47
LN LOGISTIC,B= 3. EXP 0.77 0.84 1.03 1.28 0.52 0.60 0.81 1.08
LN LOGISTIC.B- 4. EXP 0.78 0.84 0.98 1.15 0.48 0.56 0.71 0.97



TABLE 3 - LOG NORMAL MLE

SAMPLE SIZE 25 SAMPLE SIZE 50
DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED
OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%

EXPONENTIAL EXP 1.30 1.31 1.37 1.49 0.93 0.98 0.93 1.04
WEIBULLB-0.50 EXP 1.43 1.25 1.28 2.33 1.05 1.21 0.87 1.80
WBIBULL,B-2.00 EXP 1.13 1.17 1.30 1.43 0.91 0.92 1.02 1.08
WEIBULL,B-4.00 EXP 1.10 1.15 1.22 1.32 0.86 0.92 0.94 1.12
WEIBULL,B-8.00 EXP 1.04 1.10 1.17 1.23 0.87 0.88 0.96 1.05
WEIBULL.B-0.50 WEI 1.39 1.15 1.53 0.94 0.83 0.92
WEIBULL.B-2.00 WEI 1.17 1.25 1.44 0.94 0.97 1.05
WEIBULL,B-4.00 WEI 1.14 1.24 1.42 0.91 1.01 1.04
WEIBULL,B-8.00 WEI 1.15 1.20 1.39 0.90 1.02 1.06
NORMAL,O-0.05 EXP 1.79 1.77 1.80 1.80 1.72 1.77 1.70 1.82
NORNAL,u-O.1O EXP 1.58 1.65 1.73 1.65 1.52 1.55 1.53 1.60
NORMAL,O-0.15 EXP 1.47 1.47 1.55 1.56 1.36 1.37 1.41 1.53
LN NORNAL.S-.37 EXP 1.56 1.53 1.64 1.64 1.56 1.58 1.58 1.68
LN NORMAL.S-.51 EXP 1.50 1.54 1.55 1.73 1.59 1.32 1.61 1.75
LN NORMAL.S-.61 EXP 1.54 1.51 1.62 1.82 1.56 1.16 1.64 1.83
EP.B-0.25 EXP 1.06 0.78 0.94 1.88 0.62 0.45 0.57 1.55
EP.B-0.50 EXP 1.04 1.01 0.91 1.18 0.67 0.61 0.55 0.76
EP.B-1.O0 EXP 0.85 0.99 1.08 1.22 0.57 0.62 0.70 0.69
EP.B=8.00 EXP 0.84 0.84 1.00 1.05 0.59 0.61 0.75 0.81
EPB=0.25 EP 0.92 0.75 0.90 0.54 0.41 0.47
EP.B=0.50 EP 1.03 0.97 1.05 0.65 0.57 0.61
EP.B=1.00 EP 0.91 1.02 1.07 0.61 0.65 0.71
EPB-8.00 EP 0.85 0.98 1.11 0.63 0.73 0.76
PARETO,B-1.00 EXP 1.53 1.45 1.62 2.53 1.38 1.34 1.41 1.99
PARETO,B-2.00 EXP 1.44 1.48 1.54 1.97 1.28 1.21 1.16 1.45
PARETO.B=4.00 EXP 1.35 1.43 1.40 1.76 1.18 1.12 1.06 1.23
GOMPERTZ.B-0.50 EXP 0.96 0.99 1.10 1.17 0.62 0.67 0.70 0.74
GOMPERTZ.B-1.00 EXP 0.75 0.78 0.91 1.05 0.45 0.47 0.55 0.62
GOMPERTZ,B-2.00 EXP 0.56 0.63 0.70 0.86 0.33 0.37 0.42 0.50
GAMMA.B-0.50 EXP 1.11 1.02 0.94 1.38 0.72 0.66 0.55 0.84
GAMMA.B=2.00 EXP 1.37 1.41 1.56 1.69 1.18 1.20 1.32 1.31
GANMA.B-4.00 EXP 1.43 1.53 1.58 1.67 1.38 1.34 1.49 1.58
GA, A.B-8.00 EXP 1.53 0.78 1.58 1.66 1.45 1.48 1.54 1.64
BATHTUB.P-0.15 EXP 1.35 1.33 1.33 1.62 1.02 1.04 1.00 1.09
BATHTUB.P-0.25 EXP 1.29 1.31 1.37 1.56 0.96 1.00 1.01 1.10
BATHTUB.P=0.40 EXP 1.12 1.21 1.27 1.45 0.79 0.87 0.90 0.95
BATHTUB.P=0.60 EXP 0.97 1.00 1.08 1.13 0.61 0.64 0.67 0.69
LN LOGISTIC.B= 2. EXP 1.34 1.38 1.66 2.02 1.22 1.36 1.50 2.02
LN LOGISTICB= 3. EXP 1.31 1.36 1.45 1.67 1.28 1.28 1.39 1.58
LN LOGISTIC.B= 4. EXP 1.34 1.33 1.44 1.49 1.26 1.32 1.35 1.53



TABLE 4 - NORMAL ILE

SAMPLE SIZE 25 SAMPLE SIZE 50

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED

OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%

EXPONENTIAL EXP 0.56 0.61 0.87 1.39 0.34 0.41 0.58 0.99

WEIBULL,B=0.50 EXP 0.16 0.28 0.87 2.54 0.08 0.26 0.50 1.68

WEIBULL.B=2.00 EXP 1.30 1.31 1.37 1.52 1.13 1.13 1.20 1.35

WEIBULL.B-4.00 EXP 1.62 1.63 1.60 1.68 1.65 1.65 1.65 1.65

WEIBULL.B=8.00 EXP 1.38 1.45 1.51 1.53 1.32 1.31 1.36 1.45

WEIBULL,B=0.50 WEI 0.21 0.38 1.01 0.11 0.21 0.60

WEIBULL,B=2.00 WEI 1.35 1.48 1.88 1.16 1.29 1.69

WEIBULL,B-4.00 WEI 1.63 1.73 2.00 1.61 1.70 1.99

WEIBULL,B8.00 WEI 1.49 1.52 1.76 1.31 1.46 1.57

NORMIAL,.=.05 EXP 1.83 1.81 1.83 1.82 1.79 1.79 1.74 1.84

NORKAL,vq0.1O EXP 1.66 1.73 1.80 1.73 1.67 1.71 1.65 1.70

NORMAL.v00.15 EXP 1.63 1.64 1.69 1.69 1.63 1.63 1.64 1.72

LN NORMAL,S-.37 EXP 0.92 0.95 1.08 1.23 0.68 0.74 0.82 1.01

LN NORNAL.S=.51 EXP 0.66 0.76 0.90 1.09 0.45 0.51 0.65 0.87

LN NORMAL,S
=.61 EXP 0.57 0.60 0.78 1.07 0.35 0.40 0.55 0.79

EP.B-0.25 EXP 0.14 0.24 1.03 3.17 0.07 0.14 0.64 2.44

EP,B=0.50 EXP 0.46 0.52 0.79 1.60 0.27 0.32 0.51 1.12

EP,B=.00 EXP 1.19 1.15 1.25 1.43 0.90 0.92 1.02 1.16

EP,B=8.00 EXP 1.13 1.11 1.30 1.31 0.84 0.88 1.02 1.10

EPB=0.25 EP 0.17 0.33 0.95 0.09 0.18 0.54

EP.B=0.50 EP 0.51 0.69 1.16 0.31 0.44 0.78

EP.B=1.00 EP 1.19 1.26 1.63 0.92 1.01 1.32

EP,B=8.00 EP 1.13 1.28 1.43 0.90 1.03 1.12

PARETO.B-1.00 EXP 0.17 0.28 0.68 1.82 0.08 0.16 0.39 1.06

PARETO,B-2.00 EXP 0.26 0.35 0.70 1.58 0.15 0.21 0.40 0.92

PARETO.B=4.00 EXP 0.34 0.45 0.72 1.51 0.21 0.27 0.45 0.90

GOMPERTZ,B-0.50 EXP 1.08 1.08 1.15 1.50 0.82 0.83 0.92 1.10

GOMPERTZ.B=1.00 EXP 1.39 1.41 1.43 1.52 1.22 1.26 1.32 1.39

GONPERTZ.Bm2.00 EXP 1.48 1.55 1.61 1.77 1.42 1.45 1.57 1.72

GAMMA.B=0.50 EXP 0.33 0.45 0.79 1.78 0.20 0.25 0.48 1.18

GAMMA,B-2.00 EXP 0.81 0.86 1.03 1.24 0.55 0.63 0.72 0.97

GAMMA,B-4.00 EXP 1.04 1.10 1.18 1.38 0.80 0.86 0.97 1.11

GANMA,B=8.00 EXP 1.25 1.41 1.35 1.42 1.05 1.06 1.22 1.33

BATHTUB,P=0.15 EXP 0.52 0.61 0.82 1.44 0.33 0.38 0.55 0.92

BATHTUB,P=0.25 EXP 0.60 0.65 0.84 1.27 0.38 0.42 0.57 0.91

BATHTUB,P-0.40 EXP 0.72 0.78 0.93 1.36 0.46 0.55 0.67 0.96

BATHTUB,P-0.60 EXP 0.91 0.99 1.11 1.41 0.65 0.73 0.84 1.09

LN LOGISTIC,B
= 2. EXP 0.24 0.31 0.60 1.17 0.11 0.18 0.39 0.78

LN LOGISTIC.B- 3. EXP 0.40 0.47 0.70 1.00 0.23 0.28 0.47 0.74

LN LOGISTIC.B- 4. EXP 0.57 0.65 0.84 1.04 0.34 0.41 0.57 0.84



TABLE 5 - EXPONENTIAL POWER MLE

SAMPLE SIZE 25 SAMPLE SIZE 50

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED

OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%

EXPONENTIAL EXP 1.29 1.37 1.54 1.95 1.14 1.31 1.46 1.96

WEIBULL,B-0.50 EXP 1.18 1.41 2.11 4.77 1.07 1.37 2.01 4.88

WEIBULL,B-2.00 EXP 1.34 1.40 1.41 1.55 1.19 1.24 1.32 1.47

WEIBULL,B=4.00 EXP 1.41 1.42 1.42 1.51 1.15 1.18 1.28 1.33

WEIBULL,B=8.00 EXP 1.34 1.36 1.49 1.55 1.07 1.05 1.21 1.35

WEIBULL.B0.50 WEI 1.34 1.56 2.44 1.31 1.43 2.05

WEIBULL.B=2.00 WEI 1.42 1.53 1.84 1.28 1.41 1.78

WEIBULL.B=4.00 WEI 1.44 1.55 1.80 1.24 1.39 1.69

WEIBULL.B=8.00 WEI 1.44 1.49 1.74 1.15 1.36 1.63

NORMALa-O.05 EXP 0.36 0.35 0.49 0.70 0.17 0.13 0.20 0.32

NORMAL,a-0.10 EXP 0.56 0.50 0.72 1.08 0.28 0.25 0.37 0.56

NORMAL.o=0.15 EXP 0.70 0.71 0.93 1.20 0.42 0.42 0.56 0.77

LN NORMAL,S-.37 EXP 0.58 0.63 0.77 0.97 0.31 0.37 0.46 0.61

LN NORMAL.S-.51 EXP 0.60 0.72 0.84 1.01 0.34 0.42 0.55 0.76

LN NORMAL,S=.61 EXP 0.65 0.70 0.87 1.13 0.36 0.44 0.59 0.84

EP.B-0.25 EXP 1.53 1.55 2.79 6.73 1.55 1.53 3.11 9.2C

EP.B=0.50 EXP 1.51 1.61 1.81 2.78 1.57 1.59 1.77 3.12

EP.B=1.00 EXP 1.57 1.59 1.69 1.80 1.58 1.59 1.73 1.84

EP.B=8.00 EXP 1.89 1.77 1.96 1.77 1.89 1.85 1.88 1.83

EP.B=0.25 EP 1.55 1.67 2.74 1.51 1.75 2.40

EP.B=0.50 EP 1.54 1.79 2.14 1.65 1.68 2.18

.EP.Bf1f.00 EP 1.57 1.65 1.90 1.67 1.64 1.99-

EPB=8.00 -P 1.73 1.77 1.82 1.81 1.75 1.76

PARETO,B-1.00 EXP 0.64 0.92 1.41 2.82 0.41 0.70 1.12 2.18

PARETO.B-2.00 EXP 0.84 1.02 1.39 2.37 0.63 0.81 1.12 1.91

PARETO,B-4.00 EXP 1.00 1.18 1.42 2.27 0.77 0.97 1.22 1.82

GONPERTZ,B=0.50 EXP 1.55 1.55 1.62 1.82 1.58 1.65 1.65 1.75

GOMPERTZ.B=1.00 EXP 1.50 1.49 1.56 1.71 1.43 1.46 1.51 1.78

GOKPERTZ.B=2.00 EXP 1.32 1.35 1.42 1.54 1.24 1.26 1.31 1.50

GAMKA,B-0.50 EXP 1.43 1.51 1.82 3.28 1.45 1.57 1.84 3.16

GAMMA,B-2.00 EXP 1.12 1.21 1.35 1.50 0.85 1.02 1.11 1.32

GAMMA,B-4.00 EXP 0.96 1.04 1.13 1.33 0.63 0.74 0.88 1.05

GAMMA,B=8.00 EXP 0.81 1.49 1.00 1.11 0.49 0.51 0.67 0.86

BATHTUB.P-0.15 EXP 1.27 1.40 1.48 2.08 1.21 1.29 1.41 1.90

BATHTUB.P=0.25 EXP 1.39 1.44 1.52 1.94 1.33 1.44 1.50 1.94

BATHTUB.P=0.40 EXP 1.49 1.54 1.61 1.89 1.42 1.60 1.59 1.92

BATHTUB.P=0.60 EXP 1.46 1.56 1.60 1.85 1.44 1.54 1.57 1.82

LN LOGISTIC,B= 2. EXP 0.46 0.59 0.89 1.46 0.23 0.34 0.64 1.08

LN LOGISTIC.B
= 3. EXP 0.46 0.54 0.75 0.99 0.23 0.29 0.46 0.69

LN LOGISTICB= 4. EXP 0.44 0.52 0.67 0.87 0.21 0.26 0.37 0.58



TABLE 6 - LOG LOGISTIC NLE

SAMPLE SIZE 25 SAMPLE SIZE 50
DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED
OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%
BATHTUB,P-0.60 EXP 1.14 1.16 1.23 1.34 0.87 0.87 0.87 0.95
EXPONENTIAL EXP 1.32 1.37 1.49 1.85 1.12 1.16 1.16 1.42
WEIBULL,B-0.50 EXP 1.17 1.28 1.54 3.14 1.05 1.21 1.15 2.76
WEIBULL.B-2.O0 EXP 1.29 1.32 1.43 1.55 1.14 1.17 1.24 1.37
WEIBULL,B-4.00 EXP 1.30 1.34 1.37 1.46 1.14 1.18 1.25 1.34
WEIBULL.B-8.00 EXP 1.34 1.40 1.45 1.51 1.16 1.20 1.25 1.37
WEIBULL.B-0.50 WEI 1.32 1.27 1.99 0.99 1.02 1.35
WEIBULL.B=2.00 WEI 1.31 1.41 1.69 1.16 1.21 1.43
WEIBULL,B=4.00 WEI 1.36 1.45 1.59 1.18 1.26 1.43
WEIBULL.B-8.00 WEI 1.42 1.47 1.62 1.17 1.33 1.39
NORMAL,-0.05 EXP 1.97 1.94 1.96 1.47 1.97 1.92 1.88 2.01
NORMAL,v=0.10 EXP 1.72 1.75 1.84 1.39 1.65 1.72 1.69 1.72
NORMAL,o-0.15 EXP 1.60 1.62 1.64 1.58 1.49 1.51 1.56 1.66
LN NORMAL,S-.37 EXP 1.47 1.49 1.53 1.54 1.43 1.46 1.49 1.64
LN NORMAL.S-.51 EXP 1.44 1.46 1.50 1.70 1.44 1.45 1.49 1.67
LN NORMAL,S-.61 EXP 1.44 1.47 1.58 1.79 1.44 1.50 1.58 1.79
EPB-0.25 EXP 1.00 0.83 1.14 2.41 0.65 0.51 0.75 2.24
EP.B=0.50 EXP 1.16 1.11 1.08 1.50 0.83 0.75 0.72 1.10
EPB=1.00 EXP 1.10 1.15 1.24 1.45 0.87 0.87 0.94 0.94
EP.B=8.00 EXP 1.21 1.17 1.33 1.20 0.85 0.92 1.06 1.16
EP.B=0.25 EP 0.94 0.90 1.15 0.59 0.50 0.67
EPB=0.50 EP 1.12 1.10 1.31 0.81 0.72 0.87
EP.B=1.00 EP 1.11 1.21 1.31 0.86 0.86 0.99
EP.B-8.00 EP 1.18 1.31 1.03 0.93 1.04 0.97
PARETOB=1.00 EXP 1.56 1.50 1.82 3.12 1.50 1.49 1.70 2.83
PARETOB=2.00 EXP 1.47 1.50 1.71 2.48 1.37 1.35 1.41 2.05
PARETO,B=4.00 EXP 1.42 1.48 1.58 2.15 1.29 1.27 1.29 1.72
GOMPERTZ,B=0.50 EXP 1.14 1.18 1.23 1.41 0.90 0.93 0.93 1.02
GOMPERTZB=1.00 EXP 1.04 1.04 1.14 1.24 0.76 0.76 0.81 0.88
GONPERTZ.B-2.00 EXP 0.91 0.95 1.01 1.09 0.67 0.69 0.72 0.77
GAMMAB-0.50 EXP 1.21 1.11 1.12 1.82 0.87 0.78 0.73 1.19
GANKA,B=2.00 EXP 1.44 1.41 1.57 1.78 1.30 1.29 1.44 1.60
GAMMA.B-4.00 EXP 1.44 1.49 1.57 1.65 1.39 1.36 1.51 1.62
GAMMA.B-8.00 EXP 1.46 1.04 1.55 1.58 1.43 1.46 1.51 1.62
BATHTUB,P=O.15 EXP 1.37 1.39 1.47 2.00 1.18 1.20 1.22 1.54
BATHTUB.P=0.25 EXP 1.32 1.39 1.51 1.89 1.12 1.17 1.22 1.54
BATHTUB,P=0.40 EXP 1.21 1.29 1.39 1.71 0.99 1.04 1.08 1.27
LN LOGISTIC.B= 2. EXP 1.46 1.52 1.81 2.22 1.48 1.57 1.65 2.36
LN LOGISTIC,B= 3. EXP 1.47- 1.52 1.56 1.81 1.48 1.48 1.56 1.75
LN LOGISTIC,B- 4. EXP 1.50 1.50 1.55 1.59 1.50 1.51 1.55 1.65



TABLE 7 - PARETO NLE

SAMPLE SIZE 25 SAMPLE SIZE 50
DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED
OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%

EXPONENTIAL EXP 0.38 0.39 0.48 0.82 0.20 0.22 0.27 0.53
WEIBULLB-0.50 EXP 1.23 1.21 1.07 1.81 1.00 1.23 0.91 1.82
WEIBULL.B-2.00 EXP 0.17 0.18 0.23 0.34 0.09 0.10 0.11 0.17
WEIBULLB-4.00 EXP 0.02 0.03 0.03 0.05 0.01 0.01 0.02 0.02ma

WEIBULLB-8.00 EXP 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01
WEIBULLB-0.50 WEI 1.32 1.09 1.17 1.09 0.93 0.86
WEIBULLB-2.00 WEI 0.18 0.23 0.39 0.10 0.12 0.21
WEIBULLB-4.00 WEI 0.03 0.03 0.05 0.01 0.02 0.03
WEIBULLB-8.00 WEI 0.01 0.01 0.01 0.00 0.00 0.01
NORMAL,a=O.05 EXP 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
NORMALo-O.10 EXP 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
NORMAL,o-0.15 EXP 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01
LN NORMAL,S-.37 EXP 0.03 0.03 0.04 0.06 0.02 0.02 0.02 0.03
LN NORMAL.S-.51 EXP 0.07 0.08 0.10 0.13 0.04 0.04 0.05 0.07
LN NORMAL.S=.61 EXP 0.14 0.15 0.18 0.25 0.08 0.08 0.10 0.13
EP.B=0.25 EXP 1.01 0.74 0.86 3.35 0.62 0.43 0.59 3.96
EP.B=-0.50 EXP 0.41 0.52 0.66 1.22 0.46 0.57 0.72 1.28
EP.B=1.00 EXP 0.36 0.39 0.52 0.79 0.22 0.24 0.31 0.49
EP.B=8.00 EXP 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01
EP.B=0.25 EP 0.87 0.71 0.80 0.52 0.40 0.51
EPB=0.50 EP 0.47 0.63 0.88 0.66 0.72 0.93
EPB=1.00 EP 0.39 0.51 0.86 0.24 0.32 0.55--
EPB=8 00 EP 0.01 0.01 0.01 0.00 0.00 0.00
PARETO,B=1.O0 EXP 0.30 0.31 0.29 0.54 0.77 0.47 0.30 0.40
PARETO.B=2.00 EXP 0.32 0.31 0.36 0.55 0.44 0.39 0.26 0.43
PARETO.B=4.00 EXP 0.33 0.33 0.38 0.70 0.29 0.29 0.29 0.41
GOMPERTZ,B-0.50 EXP 0.39 0.41 0.55 0.87 0.23 0.26 0.31 0.54
GOMPERTZ.B=1.O0 EXP 0.22 0.25 0.32 0.49 0.13 0.14 0.18 0.27
GOMPERTZ,B-2.00 EXP 0.07 0.08 0.09 0.14 0.04 0.04 0.05 0.07
GAMMA,B-0.50 EXP 0.51 0.63 0.69 1.22 0.86 0.75 0.88 1.38
GAMMAB=2.00 EXP 0.28 0.31 0.38 0.53 0.15 0.17 0.21 0.31
GAMMAB-4.00 EXP 0.07 0.08 0.09 0.13 0.04 0.04 0.05 0.07
GANMA,B=8.00 EXP 0.03 0.25 0.04 0.05 0.01 0.01 0.02 0.02
BATHTUB.P=0.15 EXP 0.37 0.38 0.50 0.84 0.25 0.23 0.31 0.52
BATHTUB.P-0.25 EXP 0.36 0.37 0.50 0.80 0.19 0.23 0.32 0.53
BATHTUB.P=0.40 EXP 0.33 0.40 0.54 0.87 0.18 0.22 0.31 0.56
BATHTUBP=0.60 EXP 0.36 0.40 0.56 0.86 0.21 0.22 0.30 0.53
LN LOGISTICB= 2. EXP 0.26 0.25 0.29 0.49 0.16 0.15 0.16 0.25
LN LOGISTICB= 3. EXP 0.12 0.13 0.16 0.21 0.07 0.07 0.08 0.12
LN LOGISTIC,B= 4. EXP 0.05 0.05 0.06 0.08 0.03 0.03 0.03 0.04



TABLE 8 - GONPERTZ KLE

SAMPLE SIZE 25 SAMPLE SIZE 50

DISTRIBUTION CENSORING PERCENT CENSORED PERCENT CENSORED
OF DEATHS DISTRIBUTION 0% 10% 30% 50% 0% 10% 30% 50%

EXPONENTIAL EXP 1.41 1.44 1.57 2.16 1.57 1.52 1.63 2.24
WEIBULL.B=0.50 EXP 0.26 0.44 1.09 3.15 0.15 0.41 0.62 2.03
WEIBULL,B-2.00 EXP 1.20 1.22 1.27 1.37 0.95 0.99 1.06 1.22
WEIBULL,B-4.00 EXP 1.20 1.24 1.29 1.40 0.93 0.97 1.10 1.17
WEIBULL.B=8.00 EXP 1.50 1.52 1.61 1.63 1.35 1.40 1.47 1.54
WEIBULL.B=0.50 WEI 0.35 0.66 1.43 0.21 0.40 0.85
KEIBULLBf2.00 WEI 1.23 1.34 1.61 0.99 1.14 1.50
WEIBULL.Bf4.00 WEI 1.27 1.39 1.69 1.01 1.17 1.51
WEIBULL.B=8.00 WEI 1.54 1.56 1.79 1.36 1.51 1.69
NORMAL.o-0.05 EXP 0.65 0.77 0.97 1.16 0.36 0.41 0.51 0.72
NORMAL,o-0.10 EXP 0.78 0.82 1.05 1.35 0.46 0.51 0.66 0.89
NORMAL,o=0.15 EXP 0.82 0.93 1.07 1.31 0.54 0.59 0.74 0.94
LN NORMAL,S=.37 EXP 0.47 0.52 0.66 0.86 0.24 0.29 0.38 0.53
LN NORMAL,S-.51 EXP 0.54 0.64 0.75 0.92 0.29 0.35 0.46 0.65
LN NORMAL.S=.61 EXP 0.66 0.70 0.83 1.04 0.37 0.42 0.55 0.76
EP.B-0.25 EXP 0.19 0.31 1.04 3.32 0.11 0.17 0.62 2.50
EPB=0.50 EXP 0.87 0.94 1.23 2.43 0.62 0.66 0.88 1.92
EEP.B=1.00 EXP 1.48 1.45 1.53 1.71 1.49 1.47 1.58 1.67
EP.B=8.00 EXP 1.85 1.73 1.89 1.77 1.72 1.79 1.81 1.78
EP,B-0.25 EP 0.24 0.50 1.26 0.14 0.28 0.67
EP,B=0.50 EP 0.91 1.17 1.73 0.68 0.84 1.29
EP.B1.O0 EP 1.47 1.53 1.77 1.53 1.52 1.79
EP,B=8.00 EP 1.68 1.77 1.83 1.75 1.75 1.77
PARETO,B=1.00 EXP 0.33 0.68 1.42 3.16 0.22 0.51 1.07 2.45
PARETO,B=2.00 EXP 0.69 0.94 1.48 2.64 0.58 0.79 1.23 2.31
PARETOB=4.00 EXP 1.00 1.22 1.55 2.46 0.94 1.12 1.41 2.24
GOMPERTZ,B-0.50 EXP 1.43 1.44 1.50 1.79 1.49 1.49 1.54 1.64
GOKPERTZ,B=1.00 EXP 1.47 1.48 1.51 1.57 1.46 1.50 1.55 1.62
GOMPERTZ.B-2.00 EXP 1.50 1.48 1.54 1.62 1.53 1.53 1.58 1.64
GAMMA,B-0.50 EXP 0.65 0.79 1.19 2.64 0.44 0.52 0.81 1.92
GANKA.B=2.00 EXP 1.19 1.20 1.29 1.39 0.94 0.99 1.06 1.22
GAMMA.B-4.00 EXP 0.81 0.87 0.98 1.16 0.48 0.56 0.70 0.87
GANMA,B-8.00 EXP 0.64 1.48 0.85 0.99 0.36 0.40 0.54 0.72
BATHTUB.P=0.15 EXP 1.36 1.43 1.52 2.27 1.52 1.45 1.56 2.18
BATHTUB.PrO.25 EXP 1.41 1.44 1.54 2.03 1.44 1.49 1.61 2.19
BATHTUB,Pf0.40 EXP 1.45 1.46 1.56 1.98 1.49 1.52 1.58 2.02
BATHTUB,P=0.60 EXP 1.45 1.48 1.54 1.79 1.50 1.49 1.52 1.74
LN LOGISTIC.B= 2. EXP 0.61 0.78 1.08 1.49 0.38 0.61 0 85 1.19
LN LOGISTIC,B= 3. EXP 0.51 0.56 0.73 0 93 0.26 0.31 0.44 0.63
LN LOGISTIC,B= 4. EXP 0.39 0.46 0.59 0.80 0.18 0.22 0.32 0.51



F IGURE I - 15OF MAXIMUM LIKELIHOOD ESTIMATORS OF
SURVIVAL FOR THE EXPONENTIAL DISTRIBUTION

WITH 30% CENSORING
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5.5 4------: EXPONENTIAL (2.11)
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FIGURE 2 - USE OF MAXIMUM LUCEIJOOD ESTIATORS OF
SURVIVAL FOR THE GAIMA DISTRIBUTION

'WITH B=0.5, 30% CENSORING

6.0-

5.5- 1--: EXPONEN4TIAL (1. 22)
W-W--t WEIBUL.L (1. 73)
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FIGURE 3 - MSE OF MAXIMUM LKELIHOOD ESTIMATORS OF
SURVIVAL FOR THE WEIBULL DISTRIBUTION

WITH B=8.0. 30% CENSORING

6.0-

5.5 --- +--+: EXPONENTIAL (0.04)
W--W--W: WEIBULL (1.71)
*-----*: NORMAL (1.51)
#--#--#: LNNORM (i. 17)5.0 - S--S--&S SNITH(1.49)
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FIGURE 4 - SE OF MAXIMUM IKELIOOD ESTIMATORS OF
SURVIVAL FOR THE GOMPERTZ DISTRIBUTION

WiTH B=2. 3O0% CENSORING

6.01

5.5- 4-+-+ EXPONENTIAL (0. 37)
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FIGURE 5 - MSE OF MAXIMUM LIKEIIHOOD ESTIMATORS OF
SURVIVAL FOR THE LOG-LOGISTIC DISTRIBUTION

WITH B=3, 30% CENSORING

6.0-

5.5- ---- : EXPONENTIAL (0.39)
W--W--W: WEIBULL (1.03)
*x-----*: NORMAL (0.70)
#--#--#: LNNORM (1.45)

5.0- S--S-S SNITH(0.75)
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F IGURE 6 Ma(5 OF MAXIMM LIKELIOOD ESTIMATORS OF
SjURVIVAL FOR THE BATETUD DISMIUMrON

WIT P--0.6, 30% CENSORING

6.0-
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FIGURE 7 - MSE OF MAXIMUM LIKETlHOOD ESTIMATORS OF
SURVIVAL FOR THE SMITH DISTRIBUTION

WITH B=0.25, 30% CENSORING
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